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ABSTRACT Human’s interference in the process of skill learning can improve the performance of the robot
greatly. However, learning from demonstration to generate a new action with human behavioral character-
istics in the varying situation is challenging. Generally, dynamic movement primitives (DMPs) method can
generalize the trajectory imitating the demonstration, but cannot integrate the feature of multiple trajectories
of different targets. In this paper, the proposed method contains two aspects of learning and generating.
The statistical method Gaussian mixture model and Gaussian mixture regression (GMM-GMR) is used to
extract the common characteristic and eliminate the uncertainty of the multiple demonstrations. To exert
the ability of DMPs to generate a human-like motion to a new goal, and we model the shape parameter with
locally weighted regression (LWR)method. To enhance the ability of DMPs in multiple trajectories learning,
we propose the multivariate Gaussian process regression (MV-GPR) method to construct the regression
model of shape parameters to reflect the human intentions, with respect to the target position. To verify
the feasibility of the proposed method, we design a peg-in-hole experiment with proving generalization and
obstacle avoidance performance. The results have shown that the strategy integrated the generalization of
DMPs and feature regeneration ability of MV-GPR method, and the generated valid trajectory could achieve
the peg-in-hole task with 6-DOF whole-arm avoidance.

INDEX TERMS Dynamic movement primitives, learning from demonstration, MV-GPR, whole-arm
obstacle avoidance.

I. INTRODUCTION
In the past decades, the demand for intelligent algorithm to
mimic human behavior has been growing drastically, such
as in service, extreme and other unconstructed environment.
Different from the traditional methods, intelligent algorithm
with the machine learning method are trying to make the
transition from blind self-learning to empirically learning
and the behavior can be generalized in different situations.
Based on the prior knowledge, the algorithm can simplify the
construction of learning system and reduce the computational
performance requirement for the robot.

Learning from Demonstration (LfD) [1] a kind of imita-
tion learning method has been shown to an efficient strategy
learning the control policy. Human have the ability to per-
form complex behavior facing to the changing environment.

The associate editor coordinating the review of this manuscript and
approving it for publication was Li He.

Through simple programming human can guide robot to learn
and perform the complex task. The simplicity and usefulness
of algorithm release workers from labour intensive program-
ming work or make it easier to assist human with simple tasks
in daily life. LfD can also be classified as a kind of supervised
learning. In supervised learning, the agent is presented with
labeled training data and learns the mapping between the
world state and actions [2]. The challenge of generalizing
learned skill is trying to formulate a model mapping between
the situation and behavior.

Recently there have been extensive on the dynamical sys-
tem combination of the movement primitives to learn the
demonstration movement [3]–[9], moreover [10]–[12] intro-
ducing the sensors information such as force to modulate
the learned movement. Reference [13] also extracted variable
stiffness in real time to learn the stiffness feature of human
not limited to the movement. To improve the ability of the
generalization, multiple optimization has been applied to
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the model construction, such as batch learning [3], [9] and
incremental learning [14]–[17]. Another branch is focusing
on the probabilistic mixture modeling framework embedded
into the dynamical system. The task parameters were inserted
into the construction of the model expressed in the coordinate
system. This approach is not limited to a specific parameter
estimation technique.

Reference to the obstacle avoidance problem, Sampling-
based motion planning method has been widely used
and developed rapidly including Probabilistic Roadmaps
Method (PRM) [18], [19] and Rapidly-Exploring Random
Tree (RRT) [20]. Due to the randomization feature, it cannot
ensure the path optimality and the computational rapidity.
To solve the disadvantage of these aspects, most atten-
tions have tended to focus on narrowing the range of
the sampling region such as updating GMM by Greedy
expectation-maximization (EM) [21] adopting the principal
component analysis (PCA) method to compress sampling
data dimension [22] and the retraction policy [23]. However,
less the guiding of human, the optimal trajectory is explored
without any reference. The LfD method takes the advantage
of the human experience information while obstacle is con-
sidered during the demonstration, obstacle’s information [24]
has been inserted into the model learning as the external
parameter to modulate the human demonstration to reduce
the complexity of robot self-exploring.

The main contributions in this paper are given as follows:
(1) The underlying common features of different demon-

strations are integrated by GMM-GMR method, then take
the synthetic trajectory into DMPs to model the movement
primitives system.

(2) We propose the combination of MV-GPR multi-
output regression method and DMPs to optimize the forcing
term.

(3) Extract the demonstration shape features including the
human intention, and we generalize a new hybrid charac-
teristic trajectory to neighboring points, with the ability of
whole-arm obstacle avoidance in unknown obstacle position
context.

(4) Finally, we try to verify the proposed method using 6-
DOF arm of UR10 with Kinect in the peg-in-hole task, and
the task can be performed accurately.

The organization of this paper can be divided into five
sections, after the introduction part, we outline the related
work of the imitation and generalizing method in the chang-
ing context in Sec. II and present the mathematical basis of
the main method in Sec. III. Sec. IV describes the experiment
settings and the result obtains. Sec. V presents the conclusion
of this paper.

II. RELATED WORKS
In general there are two types of approach of robot skill
learning from human demonstration. Firstly just to imitate
the demonstration and reproduce the same trajectory as
human’s. Secondly to train a policy generalizing learned skill
in a new context from demonstration [7], [25] in addition,

it also includes the obstacle avoidance or other affiliated
motion [5], [6], [26].

There are two major methods to process the obtained data.
Task-parameterized probability approach aims at increasing
the generalization ability by exploiting the functional nature
of the task parameters. TP-GMM method tries to construct
multiple coordinate system corresponding to the objects
existing in multi-process task with the orientation in the
model [27]. In [28], the approach compacted the TP-GMM in
the bimanual tasks, introducing the external task parameters
to modulate the end-effecter poses. References [29] proposed
the Semitied-GMM model to extract the latent space fea-
tures, which enables the robot to autonomously deal with
different situations in manipulating task. Another method
introduced the EMG signal to represent the task environment
indirectly and combine the movement encoded by DMPs to
complete the complex task [30]. Dynamical movement prim-
itives (DMPs) method utilizes the advantage of its generaliza-
tion and imitation ability, to generate a trajectory to achieve
tracking the goal with property of demonstration. In this paper
we focus on describing the second method DMPs.

In recent years, based on the conventional DMPs,
researchers have improved the performance in parameter
learning by statistical learningmethod, or proposed new algo-
rithm citing the idea of DMPs, such as MoMP, ProMP.

ProMP proposed in [31] uses the probabilistic framework
to encode the demonstration. Probabilistic method could
extract the variance of the human and represent the confi-
dence of the operation process. ProMP has the better infer-
ence ability than DMPs, taking all the demonstration shapes
into consideration to generalize to a new goal and can also
blend or combine different distributions to generate a syn-
thetic trajectory. But ProMP need amount of experimental
data obtained from the same environment. MoMP [32] pro-
posed a method to combine and regenerate the movement
primitives corresponding to the new goal position and store
other task information in the library. Furthermore, it also
solved the problem of the terminal velocity limited at zero
to complete the striking movement.

DMPs [37] is a kind of one-shot learning method, it can
converge to the goal with the property of scaling on spatial
and temporal. The original version of DMPs is able to mimic
only one demonstration but lacks the property of integrate
shape feature of demonstration trajectory of different goals.
Most work on DMPs were focusing on the parameter opti-
mization or Task-Parameter introduction. The approach in [5]
utilized mixture of GMMs to learn the task-parameterized
DMPs, Gaussian mixture model constructed the correla-
tion among forcing term in DMPs, canonical phase and
task parameters, another approach [26] compacted the above
task-parameter method through integrating multiple function
into one function and introducing the Gaussian kernel to
expand multi-dimensional task parameter. To adapt to the
variable height of obstacle, [38] proposed to reconstruct the
forcing term with stylistic factor by SVD. The trajectory
was predicted by the mapping from environment feature
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parameters to trajectory style factors. But the above work
planned a path only on the plane, the end-effector’s trajectory
was 2D. Our method focus on 3D path planning without
considering the task parameter.

Above researches on DMPs only obtained one demon-
stration to train the model, the single demonstration was
insufficient to extract the information of the human invention.
In [3], it proposed a method using GMM to encoding the
forcing term in DMPs with more than one demonstration.
Although applying multiple demonstrations in DMPs, each
demonstration’s goal was constant. In this paper, we propose
a method to extract the feature of multiple demonstrations
into one trajectory. According to the multi-demonstration
of each target, we adopt the GMM method to integrate the
underlying common features of multiple demonstrations, fur-
thermore, to regenerate a distribution through GMR.

The forcing term of DMPs commonly is learned by
LWR [8], GMM-GMR [3] or Reinforcement Learning such
as PoWER [33]. The statistical method learning the param-
eter of the forcing term like LWR, GMM-GMR and other
statistic learning method are focus on training on the same
target, lack of integration and extraction of different tar-
gets’ trajectory. Meanwhile reinforcement learning optimizes
parameter by iterative update method, a kind of exploration
optimization method, however the human demonstration
does not play a major role in the process of skill learning.
Reference [4] proposed a method to achieve avoiding both
moving and stationary obstacle when manipulate a specify
task. But it must detect obstacle position and shape informa-
tion through vision. In this paper we propose a method inte-
grating the features of the demonstration to different targets
without detecting the specific obstacle position, and base on
the LWR encoding the forcing term, we used the MV-GPR
method to regenerate a new set of weights of basis function to
modulate the shape of trajectory to infer the human intention
to avoid the obstacle

III. METHOD
We assume that robot can detect the goal position, and the
initial end-effector of robot is constant. For a specific task
of reaching point such as peg-in-hole, robot senses the posi-
tion of hole and then plan a no collision path to peg. The
proposed method consists of two portions, firstly learning
from demonstration, mainly extracting the trajectory shape
parameters and the relationship between initial and target
position. To reduce the impact of the difference of teachers
and the destabilization of teaching movements, introducing
the GMM-GMR method to refine and regenerate the ref-
erence trajectory for the DMPs encoding and combine the
features encoded by DMPs for generalizing a trajectory to
peg into the new hole.

Comparing with [7], Gaussian Process Regression (GPR)
was applied to estimate the mapping between query points
and goals of robot each joints. The input data can be multi-
dimension, but output must be one-dimension. So it limits the
learning efficiency and is hard to integrate input features into

high-dimension output. We adoptMV-GPRmethod proposed
in [34]. In the second part, extract the shape parameters of
multiple demonstrations and analyze the human intention
in the non-obstacle and obstacle situation with MV-GPR
method and reconstruct DMPs model with the new forcing
term. The overview of this approach is illustrated in Table 1.

TABLE 1. The algorithm framework of the proposed learning system.

A. GAUSSIAN MIXTURE MODEL (GMM) AND GAUSSIAN
MIXTURE REGRESSION (GMR)
Gaussian mixture model is to use Gaussian probability den-
sity function to precisely quantify model. It is a model that
decomposes data into several Gaussian probability density
functions. We have a dataset collected from kinesthetic guid-
ing 0={ξt,i,ξs,i}Mi=1, it consists of M sets of data of dimen-
sionality T × 4. M is the number of the demonstration, T is
the duration of each demonstration. t is the timesteps of each
data. s represents the position of the end-effector in the Carte-
sian space s ∈ R3. The duration of multiple demonstrations
may be different. So we adopt DTW [25] method which can
ensure the consistency of time.

p(k) = πk (1)

p(0|k) = N (0;µk , 6k ) (2)

=
1√

(2π )D|6k |
e−

1
2 ((0−µk )

T6k
−1(0−µk ))

µk =

[
µIk
µOk

]
, 6k =

[
6I
k 6IO

k
6OI
k 6O

k

]
(3)
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In which {πk ,µk ,6k} are the parameters of the kth Gaussian
defining the prior, mean and covariance matrix respectively.
Expectation-Maximization (EM) [33] is a local iterative algo-
rithm used in statistics to find probability models that rely
on unobservable hidden variables using to solve the Gaussian
mixturemodel. The algorithm need to guarantee the appropri-
ate initial of each component of the mixture model to avoid
trapping into the local minima, so k-means clustering method
is applied to initialize the mean of each component.

Gaussian mixture regression [36] is a regression technique
reproduce the distribution of the new input, a kind ofweighted
sum method of the GMM.

p(ξ s|ξ t , k) ∼ N (ξ̂k , 6̂k ) (4)

ξ̂k = µ
s
k +6

st
k (6

t
k )
−1(ξ t − µtk ) (5)

6̂k = 6
s
k −6

st
k (6

t
k )
−1
6ts
k (6)

P(ξ s|ξ t ) ∼
K∑
k=1

hkN (ξ̂k , 6̂k ) (7)

B. DYNAMIC MOVEMENT PRIMITIVES (DMPS)
Dynamicmovement primitives is amethod learning themotor
action, which is able to encode both rhythmic and discrete
movement. Our work only focuses on the discrete movement.
The original formulation in paper [38], can solve the problem
arose by changing goal position, such as tracking the moving
object. A separated DMPs can be learned in different degrees
of freedom (DOF), corresponding to the robotic arm, rep-
resenting the joint of robot arm or the xyz axis position of
end-effector in Cartesian space respectively. The canonical
system has the function of normalizing time. x is set to 1 at
the beginning generally and it monotonically decays to zero.
τ is the temporal scaling factor, we set it equal to the execute
time. αx determines the convergence of x.

τ ẋ = −αxx (8)

The prototype of DMPs is a second-order damped spring
system model [8]

τ ÿ = αz(βz(g− y)− ẏ)+ f (9)

τ ż = αz(βz(g− y)− z)+ f (10)

τ ẏ = z (11)

αz and βz are the positive constants, and f is a nonlinear
forcing term normalized linear combined of basis function.
The width and center of basis function is set heuristically.
The forcing term has the influence on the shape of trajectory,
nevertheless the weight of each kernel is that determining
factor.

f (x) =

∑N
i=19i(x)wi∑N
j=19j(x)

x(g− y0) (12)

9i(x) = exp(−
1

2σ 2
i

(x − ci)2) (13)

For adapting different goals autonomously, we online
modify the forcing term, and employ x(g − y0) in f (x).

Conditioning on given position of the end-effector, we use
difference methods to compute the velocity and acceleration.
Inserting the above computed information in ftarget obtain

ft arg et = τ 2ÿdemo − αz(βz(g− ydemo)− τ ẏdemo) (14)

Now the problem converts into J = min(ftarget − f ),
the weight w is learned by approximate functions. In this
paper we learn the parameterw of the demonstration by LWR,
and use the MV-GPR mentioned in the Sec. C to regenerate.

C. MULTIVARIATE GAUSSIAN PROCESS
REGRESSION (MV-GPR)
Gaussian process regression has been widely applied in the
research of learning from demonstration, it is a powerful and
effective method to process nonlinear regression problems.
Despite the excellent properties of GPR, there are still exiting
some obvious deficiencies. The majority of GPR models are
implemented for single response variables, thus it is hard to
solve the multi-response variables. So we apply the method
MV-GPR to break this limitation.MV-GPR is amore straight-
forward method, and can be implemented in the same way as
the conventional GPR, where the model settings, derivations
and computations are all directly performed in matrix form,
rather than vectorizing the matrices as done in the exist-
ing methods. This multi-output method can solve regression
between the change of goal position and the multi-weight
parameters in forcing term of dynamical movement primi-
tives. Apply the covariance of the each shape parameters in
the regression model, it could improve optimization.

The definition of multivariate Gaussian process is the first
step of MV-GPR. Like the definition of Gaussian process,
the multivariate Gaussian process should be a set of ran-
dom vector-valued variables, and any number of random
vector-valued variables have a matrix-variable Gaussian dis-
tribution. Therefore, the multivariate Gaussian process is
defined as follows.
F is a multivariate Gaussian process of variable x, with

mean function u: X 7→ Rd and kernel function k represents
the covariance: X × X 7→ R and the positive semi-definite
parameter matrix � ∈ Rd×d , if any finite collection of
vector-valued variables have a joint matrix-variate Gaussian
distribution

[f (x1)T , . . . , f (xn)T ]
T
∼ MN (M , 6,�), n ∈ N (15)

we denote f ∼ MGP(u, k, �). f , u ∈ Rd are the row vectors
consisting of the function {fi}di=1 and {µi}di=1 respectively.
Moreover, M ∈ Rn×d with Mij = µj(xi) represents mean
matrix, 6 ∈ Rn×n with 6ij = k(xi, xj) and � ∈ Rd×d

represent the column covariance matrix and row covariance
matrix respectively

Given n pairs of difference between the goal and initial
position and the parameter w of LWR learning the forcing
term in DMPs from the demonstration. {(xi, yi)}ni=1, xi ∈
Rp, yi ∈ Rd . These data satisfy the following assumption,

f ∼ MGP(u, k ′, �) (16)

yi = f (xi), for i = 1, . . . , n (17)

VOLUME 7, 2019 36189



B. Ti et al.: Human Intention Understanding From Multiple Demonstrations and Behavior Generalization

where k ′ = k(xi, xj) + δijσ 2
n , δij = 1 if i = j, otherwise

δij = 0. Following the common set of GPR, the mean vector
u = 0.

According to the definition of multivariate Gaussian pro-
cess, the collection of function [f (x1)T , . . . , f (xn)T ]

T
satisfy

the joint matrix-variate Gaussian distribution.

[f (x1)T , . . . , f (xn)T ]
T
∼MN (0,K ′, �) (18)

where K ′ is the n× n column covariance matrix of X, where
the (i, j)-th component is [K ′]ij = k ′(xi, xj). We define the
kernel as Automatic Relevance Determination(ARD)

After training the model of MV-GPR, we predict the new
parameter w with the test position of a new target hole
collected through the vision system. The difference position
between target and initial is X∗ = [xn+1, . . . , xn+m]T and
the predictive target w is f∗ = [f∗1, . . . , f∗m]T. The joint
distribution of the training observations and the predictive
vector of w is given as follow.[

Y
f∗

]
∼ MN

(
0,
[
K ′(X ,X ) K ′(X∗,X )T

K ′(X∗,X ) K ′(X∗,X∗)

]
, �

)
(19)

Based on the principle of the condition distribution of
Gaussian process, we can derive multivariate Gaussian pro-
cess predictive distribution as follow.

p(f∗|X ,Y ,X∗) = MN (M̂ , 6̂, �̂) (20)

where

M̂ = K ′(X∗,X )TK ′(X ,X )−1Y ,

6̂ = K ′(X∗,X∗)− K ′(X∗,X )TK ′(X ,X )−1K ′(X∗,X ),

�̂ = �. (21)

Furthermore we also derive the expectation and covariance.

E[f∗] = M̂

= K ′(X∗,X )TK ′(X ,X )−1Y (22)

cov(vec(f T∗ )) = 6̂ ⊗ �̂

= [K ′(X∗,X∗)

−K ′(X*,X )TK ′(X ,X )−1K ′(X∗,X )]⊗�

(23)

The forcing term of DMPs is the function mentioned as
Sec. III-B. We reconstruct the function as follow

F = 8TW

8 =



φ1(x1)∑N

i=N
φi(x1)

x11G . . .
φ1(xT )∑N

i=N
φi(xT )

xT1G

...
. . .

...
φN (x1)∑N

i=N
φi(x1)

x11G · · ·
φN (xT )∑N

i=N
φi(xT )

xT1G


W =

ω1(x)
. . .

ωN (x)


1G = (g− y0) (24)

FIGURE 1. The setting of the experimental environment.

where N is the number of basis function and T is the number
of timesteps. We can extract the weights of DMPs from the
observation data, 4 = {W 1 . . .W J

}. J is the target number
of demonstration.

Through the vision system the position of the target is
available and the initial position of the robot is set stationary,
Pt arg et {xi, yi, zi} i = 1 · · ·N , P0{x0, y0, z0}

The difference between target and robot end-effector
1P = Pt arg et − P0 is used as input data of the MV-GPR
model, and output the weights of the radial basis function.

Given J pairs of observation {(1Piaxis,W
i
axis)}

J
i=1 axis rep-

resent the x, y, z axis in Cartesian space respectively and
1Paxis ∈ R,Waxis ∈ RN We train the model through the
formula (15)-(23) with above data. While, the hole transfers
to another place, the new position detected by Kinect will
be passed into the model to get the corresponding shape
parameter ω of the new trajectory. By deriving from the
formula (20)-(21), we obtain

E(W∗) = M̂ = K ′(1P∗,1P)TK ′(1P,1P)−1W

(25)

6̂ = K ′(1P∗,1P∗)

−K ′(1P∗,1P)T

×K ′(1P,1P)−1K ′(1P∗,1P). (26)

cov(vec(WT
∗ )) = 6̂ ⊗ �̂ = [K ′(1P∗,1P∗)

−K ′(1P∗,1P)TK ′(1P,1P)−1

×K ′(1P∗,1P)]⊗� (27)

With the multi-dimension output parameter w, We gener-
alize a new peg-in-hole behavior by DMPs.

IV. EXPERIMENTS
In this section we test the performance of the method pro-
posed in this paper through two experiments. In the experi-
ment setup part, we select UR10 robot and the vision embed-
ded in the robot system by hand-eye calibration. The fixed
marker on the hole-box is detected by the Kinect RGB-D
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FIGURE 2. The block diagram of GMM-GMR data processing and MV-GPR-DMPs behavior generalizing.

FIGURE 3. (a) In generalizing task, human dragged UR10 robot to the nine targets. (b) In the obstacle avoidance task, human demonstrated the
UR10 robot to the six targets. These trajectories were encoded by the GMM method, and we selected 4 Gaussian models to characterize the curve
(selected by Bayesian information criterion [39]). Obtain the normal trajectory by GMR.

camera using the wrapper of ROS to locate the position of the
target hole, to simplify the experiment, we set the orientation
of the target and end-effecter fixed as to verify the path
planning ability.

The following tests are carried out for the discrete motion:
(1) peg into a new hole to evaluate the ability to extract the
characteristics of multi-objective demonstration trajectory.
(2) take a stationary obstacle appearing during both teaching
and execution step into consideration, the regenerated tra-
jectory extracts the human intentions of the multi-objective
demonstration trajectory to avoid the obstacle without know-
ing the specific obstacle’s position.

The common part of The two experiments is training data
acquisition. Firstly we demonstrate the peg-in-hole task by

kinesthetic teaching, set the robot to gravity compensation
mode, and record the end-effector’s trajectory to the same
target ten times. Using DTW method to regular time series
trajectory before adopting the GMM-GMRmethod to encode
these trajectories into the distribution offline and then recon-
struct a trajectory. Fig. 1 shows the environment setting. The
algorithm framework of the whole system is shown in Fig. 2.

A. PEG-IN-HOLE WITH GENERALIZATION ABILITY
Firstly, we drag UR10 to teach the skill of inserting into
the nine holes. As shown in Fig. 3(a), there are ten tra-
jectories to each holes. And these ninety trajectories are
encoded by GMM, and regressed by GMR. The trajecto-
ries obtained by regression extract the characteristic of these
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FIGURE 4. Mean and variance of the w value obtained by MV-GPR
method in generalizing task. (a) presents the value of w in the
generalizing task. (b) presents the value of w in the obstacle avoidance
task.

FIGURE 5. The generalizing trajectories of during the non-obstacle
(a) and obstacle (b) peg-in-hole task. The black curves represent the
normal trajectories processed by GMM-GMR, and the red curves
represent the generalized trajectories processed by MV-GPR and DMPs.
The symbol ’+’ represents the target hole.

FIGURE 6. The snapshots during the generalizing task to the four targets.

ninety trajectories by statistical method. Comparing with
the average method, the statistical method can eliminate the
jerky signal during the kinesthetic teaching and obtain a
smoother curve. We use these as normal trajectories to model
the DMPs.

After using the LWR method to encoded the forcing
term in DMPs of these normal trajectories, we obtain each
demonstration feature parameters w. we choose the number
of w heuristically as 15, which can encode the forcing term
smoothly and accurately. After that we take the w value of the
nine normal trajectories as the training data into the MV-GPR
regression model, and the four new targets position detected
by Kinect after processing as the test input data. As Fig. 4(a)
shown, the feature parameters of trajectories to the four new
targets are obtained. Corresponding to the position of the
four targets, the w value of x and z axis are divided into
two parts (x : {1, 3; 2, 4} , z : {1, 2; 3, 4} where number is
the mark of the hole, holes classified in the same group are

approximately on the same axis), because the four holes are
on the same plane x-z, so the values of w on y axis are similar.
In Fig. 5(a), the trajectories of the four new targets could
represent the proposed method ability of feature integration
and generalization.

B. PEG-IN-HOLE WITH AVOIDANCE OBSTACLE ABILITY
For highlighting the application characteristics of this method
obviously.We design a 6-DOFwhole-arm obstacle avoidance
task. With the intervention of human, we can get the rid of
the limitation of the redundant degree of freedom. In this
task, we just demonstrate only six holes, because of the
existence of the obstacle in the 3D configuration space of
the 6-DOF arm, some position cannot reach anyway. Firstly
we set the stationary obstacle right in front of the hole-box
without any external detection to this obstacle. Then we
get the sixty trajectories to achieve the hole with avoidance
ability. As Fig. 3(b) shown, the process is the same as the
above mentioned.

FIGURE 7. The snapshots during the generalizing task with obstacle
avoidance to the four targets.

In Fig. 4(b), we get the generalized parameter w through
the MV-GPR. We can find that w value of x axis has the com-
plete difference from the generalizing task without obstacle,
because of the existence of obstacle, the value of w in x and z
have dramatically increased. The manipulation of task can be
seen from Fig. 7. The robot can avoid the obstacle without
knowing the specific position just analyzing the shape of
the demonstration trajectory. The specific path is presented
in Fig. 5(b). In Fig. 8, from two viewpoints, the shape of
the path generated with the avoidance ability imitating the
demonstration. In the plane of x-y and y-z when violating
into the region of the obstacle, it generated a high curva-
ture fragment trajectory within the range of demonstration.

FIGURE 8. x-y and y-z orientation of the generalized trajectory in the
obstacle avoidance task.
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The target holes on the same axis have the similar shape.
As above summarized, the trajectories are integrated with
the human intention, so we can conclude that the method
of MV-GPR can generalize a new set of feature parame-
ters according to the new target under the reference of the
demonstration.

V. CONCLUSION
In contrast to previous research on the DMPs in the robot
learning from demonstration, we used the machine learning
method GMM-GMR to encode the demonstration to refine
the learning skills. The DTW method was used to regular the
time series of demonstration preparing for GMM encoding.
For getting rid of the shortcomings of DMPs just modelling a
single trajectory, we adopted the statistical regression method
MV-GPR to construct the shape parameter model of DMPs.
This approach generalized the trajectory synthesizing the
shape feature corresponding to the target position detected
by Kinect. The generalization performance and flexibility
were verified on the real robot arm UR10 for the point to
point extrapolation reaching and 6-DOF whole-arm obstacle
avoidance task. The results showed that with the combination
characteristics of DMPs and MV-GPR this approach could
extract and understand the human intention, and then the
6-DOF arm could achieve the obstacle avoidance without
knowing the specific obstacle position.

This paper only described the aspect of trajectory skill
learning. In the future work, we will take the obstacle position
into consideration in dynamic environment, and combine it
with the human intention to modulate the robot trajectory to
achieve dynamic obstacle avoidance. We also plan to extend
our proposed work on the force feedback control embedded
in DMPs and incorporate the end-effecter orientation into
the generated behavior and draw on the idea like ProMP,
to introduce Bayesian regression method into the existing
method.
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