
A Geometric Optimal Control Approach for Imitation and Generalization of
Manipulation Skills

Boyang Ti1,2, Amirreza Razmjoo2,3, Yongsheng Gao1, Jie Zhao1 and Sylvain Calinon2,3

1State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
(email: 17b908043@stu.hit.edu.cn; gaoys@hit.edu.cn; jzhao@hit.edu.cn)

2Idiap Research Institute, CH-1920 Martigny, Switzerland

3Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
(email: amirreza.razmjoo@idiap.ch; sylvain.calinon@idiap.ch)

Abstract

Daily manipulation tasks are characterized by regular features associated with the task structure, which can be de-
scribed by multiple geometric primitives related to actions and object shapes. Only using Cartesian coordinate sys-
tems cannot fully represent such geometric descriptors. In this article, we consider other candidate coordinate systems
and propose a learning approach to extract the optimal representation of an observed movement/behavior from these
coordinates. This is achieved by using an extension of Gaussian distributions on Riemannian manifolds, which is
used to analyse a small set of user demonstrations statistically represented in different coordinate systems. We for-
mulate the skill generalization as a general optimal control problem based on the (iterative) linear quadratic regulator
((i)LQR), where the Gaussian distribution in the proper coordinate systems is used to define the cost function. We
apply our approach to object grasping and box-opening tasks in simulation and on a 7-axis Franka Emika robot using
open-loop and feedback control, where precision matrices result in the automatic determination of feedback gains for
the controller from very few demonstrations represented in multiple coordinate systems. The results show that the
robot can exploit several geometries to execute the manipulation task and generalize it to new situations. The results
show high variation along the do-not-matter direction, while maintaining the invariant characteristics of the task in
the coordinate system(s) of interest. We then tested the approach in a human-robot shared control task. Results show
that the robot can modify its grasping strategy based on the geometry of the object that the user decides to grasp.

Keywords: Learning from Demonstration, Riemannian Geometry, Model-based Optimization, Optimal Control

1. Introduction

Skillful manipulation does not just mean how precisely a person can perform a task, but also how well one can cope
with complex and changing scenarios and exploit the system redundancy to counteract perturbations. This fact arises
from a variety of research areas, including biomechanics, neuroscience, sport science, control, and robotics, with
related formulations including minimal intervention principle [1], uncontrolled manifold [2], and optimal feedback
control [3]. In the uncontrolled manifold, for example, we assume that the human would not be very stiff in the
directions that do not matter for the task, so we expect to see wide variations in the motion of those directions. The
central nervous system will not focus on the do-not-matter directions. Instead, its control effort would be delegated
among the variables crucial for the task (low variability) [4].

Synergies in the system can be defined by considering a more general definition of variation, namely the correla-
tion. Synergistic systems can keep the system functionality not merely by controlling only one variable but also all
the linked elements. Studies such as [5] show that this capability is the main principle that helps biological systems in
nature deal with complex situations.

We can use different coordinate systems to describe the task. Sternad et al. [4] have shown that the choice of the
coordinate system plays an important role in (co)variation modeling. Each coordinate system can be seen as a set of
different features. Some features (coordinate systems) can exploit the structure of the task by forgiving the errors in

Preprint submitted to Robotics and Autonomous Systems April 8, 2023

G
eo

m
et

ri
c

P
ri

m
it

iv
es

S
h
ap

e

 G
eo

m
et

ri
c

P
ri

m
it

iv
es

A
ct

io
n

G
eo

m
et

ri
c

P
ri

m
it

iv
es

S
h
ap

e

 G
eo

m
et

ri
c

P
ri

m
it

iv
es

A
ct

io
n

Figure 1: Geometric primitives in daily objects and tasks, with examples involving prismatic, cylindrical and spherical shapes.

different ways, so they are more advantageous over others. This advantage can be seen from both computational and
geometrical aspects, see [6] for an overview. Moreover, studies in human motion planning [7, 8] suggest that humans
can model the task in different or even “mixed” coordinate frames, such as body reference frame (the putamen) and
gaze- or head-centered frame (parietal cortex), which may be well addressed by the concept of multiple candidate
geometries formulated as an optimal control problem.

Most graspable shapes in our human-made environment, either the whole object or a local part of it, can be
described by three main types of coordinate systems: Cartesian, cylindrical and spherical coordinate systems as
shown in Fig. 1. In addition to object shapes, some tasks can be represented more efficiently in a specific coordinate
system. As shown in the second row of Fig. 1, rotating an object (e.g., opening/closing a door, turning a page of a
book) can be described in a cylindrical system, while for wiping a table and pointing to an object, it is better suited
to use a prismatic and a spherical system, respectively. Defining the task in the proper manifold allows the task to be
represented with more relevant geometric features, enabling the robot to extract and learn the skill more easily.

In this article, we introduce a motion planning approach that can benefit from different coordinate systems and
present an approach to extract the most relevant one by statistical analysis. We use a small set of demonstrations and
a set of Riemannian manifolds to estimate Gaussian distributions for each coordinate system. The skill generalization
problem is formulated as a general optimal control problem (OCP). The cost function of the OCP is defined using
the Gaussian distributions constructed in the optimal coordinate system with the reference reproduced by Gaussian
mixture regression (GMR). The processing pipeline of the approach is shown in Fig. 2.

In our previous work [9], we used open-loop control in an optimal control framework to reproduce the task.
However, the (i)LQR method can also provide optimal feedback gains, which can be used to cope with external
disturbances. The values of the feedback gains determine how the system would react to the disturbances, which
is highly related to the task. However, these gains are often set manually as diagonal matrices. Typically, they are
also exclusively defined in a Euclidean space, which limits the application scenarios involving objects and actions
characterized by other geometries. Learning task-dependent feedback gains is discussed in LfD by considering the
data variations. We show in this article how modeling these variations in different types of coordinate systems can
improve the system’s autonomous behavior. Modeling the data in multiple types of coordinate systems reveals the
more subtle correlation between the states of the system and provides a more systematic way to exploit the variations.

Feedback gains are also necessary for collaborative tasks to keep humans safe (by not applying excessive force)
and provide more intuitive interactions. However, it is not enough. Feedback gains allow the system to react to spatial
disturbances, but they do not consider temporal ones. When the robot interacts with a predictable environment, it
may not be a big issue. However, a human is highly unpredictable and introduces many sources of spatiotemporal
disturbances to the system. It would be more favorable to have a time-independent controller, usually called policy
in the literature. To gain this goal, we implement the phase estimation technique by decoupling the time variable of
the system, i.e., phase, from the real-world clock, and calculating the phase as a function of the robot states. This
improvement allows us to get a time-independent policy from the iLQR method without changing anything on the

2

Reference

trajectory

in

GMM in various

Sparse
demonstrations

recording
GMR in

winner-takes-all
strategy

Learning From Demonstration

Precision

matrices

.vip

Generalization

Open loop without

perturbation

Passive human

virtual guidance

grasping

manipulation

Motion planning on the winner coordinate

system using optimal control strategy with

Closed loop with

perturbation

Controller gains learned

from demonstration

Phase

estimation

Time-

independent

Planning Off-Line

weight matrices and

Figure 2: Processing pipeline of the approach. The left block is the learning part, where the Gaussian distribution is constructed in the Riemannian
manifold based on human demonstrations (Grasping and Box-opening). By exploiting a winner-takes-all strategy and GMR, a reference trajectory
is generated in the chosen coordinate system with the precision matrix information passed to the generalization block. The right block shows the
generalization approach using an optimal control strategy for autonomous manipulation (with and without perturbation), and for a collaborative
grasping task with human guidance, where the gain matrices of a feedback controller are computed by relying on the precision matrices.

optimization part.
We also represented invariant features of observed manipulation in the chosen coordinate system from Cartesian,

Cylindrical with z axis and Spherical coordinates in [9]. The system was defined at the level of the robot kinematic,
where a linear system reproduced the time-driven movement in an optimal control framework with a non-linear cost
function. Beyond the combination of our preliminary contributions on imitation of manipulation skills using multiple
geometries, the contributions of this research are the following: (1) We propose an approach to improve the general-
ization capability of manipulation skills by fully considering different types of coordinate systems including Cartesian,
Cylindrical with three distinct main axes, and Spherical coordinates. (2) We introduce a motion planning approach
using OCP defined in different coordinate systems both at the level of the task and at the level of the robot kinematic
structure. (3) We define precision matrices within an optimal control formulation, resulting in the automatic determi-
nation of feedback gains for the controller from the sparse demonstrations represented in multiple coordinate systems.
The associated feedback controllers consider these different objectives in a coordinated manner, allowing the robot to
exploit task variations with diverse geometries. (4) We validate the application of our method for manipulation tasks
on a real robot in both autonomous and shared-control modes.

The notations are summarized in Table 1. In the remainder of the article, we summarize the related works in Sec.
2, and give an overview of the background in Sec. 3. The method is explained in Sec. 3.3. Sec. 5 includes the
experiments and we discuss the results in Sec. 6. We conclude the article in Sec. 7 by summarizing the contribution,
limitations and future works.

2. Related Work

The aim of the proposed approach is to utilize the geometric data obtained from few demonstrations to enhance
the robot adaptation capability. We utilize optimal control techniques to facilitate the transfer of the desired behaviors
to different situations. Additionally, we seek to explore the benefits of leveraging this information in a shared control
setting, where the robot determines which directions or geometric information to prioritize while enabling the human
operator to control the system in other directions, i.e. do-not-matter directions. Within this context, we examine

3

Table 1: List of the variables used in this article.
Notation Explanation
A state matrix
B input matrix
K feedback gain
N number of coordinate systems
O basis origin of coordinate systems
Q precision matrix of selected coordinate system
R control weight matrix
Rd Euclidean space
Sx/u augmented state/input transformation matrices
Sd sphere manifold
M1/2/3 manifold of Cartesian/Cylindrical/Spherical coordinate system
Tx0M tangent space of the point x0 on manifold
c(c∗) cost function(in the selected coordinate system)
e state on the tangent space of target state (residual vector)
n∗ index of selected coordinate system
xn state vector/in the n-th coordinate system
xpos/ori

d,n,t d-th dimension of position/orientation represented in the n-th manifold at timestep t
u control command vector
Expx(e) exponential map
Logx(y) logarithmic map

three key challenges associated with this task, namely, the acquisition, utilization and representation of geometric
information, shared control, and optimal control.

2.1. Application of Geometry Information

The geometry of objects has been considered in robotic manipulation for different reasons. One of its famous
applications is force control [10]. The object or the task action constraint can have a complicated shape. However,
we can often reconstruct each shape approximately using simple geometric primitives [11], or by combining it with
point clouds [12, 13]. The manipulation features can be represented efficiently using three priority levels of safety,
primary and auxiliary constraints extracted from geometric primitives [14]. The difference from our approach is
that we consider multiple types of coordinate systems, which can represent curved geometry features better than the
strategy that uses multiple Cartesian coordinate systems.

Different from the most of research [15, 16] on skill learning, which encoded the system only in a Cartesian
coordinate system ignoring the task geometry information. The introduction of geometry can fill this gap in this field
[17, 18]. C. Pérez-D’Arpino et al. [19] have used computer-aided designs (CAD) and the Euclidean group SE(3)
to reason about the geometric constraints. These constraints, including axial rotation, fixed points, etc., can also be
extracted from a list of kinematic constraints [20]. The demonstrations are also utilized to define soft constraints
in cost functions. Vochten et al. [21] introduced the trajectory shape descriptors to represent the demonstration in
a coordinate-free way, which eliminates the dependency on the coordinate reference of the demonstration during
movement generalization. Calinon et al. [22] formulate an OCP with a quadratic cost whose precision matrix was
proportional to the inverse of (co)variation of demonstration data expressed in multiple Cartesian coordinate systems
(from the perspective of different objects or landmarks). This approach allows the robot to benefit from the variation
observed in the data to determine the importance of the different Cartesian coordinate systems and provide an adaptive
compliance behavior for the manipulation task based on this information.

4

2.2. Representation of Geometry

The Cartesian coordinate system is most widely used for locating objects. However, its characteristics make it
challenging to represent variation information that would not follow prismatic shapes. Another strategy is using a
curvilinear coordinate system, which can be simpler to use than the Cartesian coordinate system for applications
considering various geometries. Currently, the curvilinear coordinate system has been exploited in plane motion
planning like autonomous driving [23, 24]. Ju et al.[25] developed the curvy axis Gaussian model in two-dimensional
Cartesian space, which needs enough data points to fit the Gaussian. In the manipulation case, Zhang et al. [26]
introduced an Adapted Curvilinear Gaussian Mixture Model to encode the curve distribution which bends the principal
axis of Gaussian into a nonlinear shape. It happens in Rd space, which can roughly fit the curves, but it will lose the
geometry information in the case of a curve with a large curvature.

2.3. Shared Control

Shared control has a wide variety of applications, ranging from robot-assisted human surgery [27] to naviga-
tion control [28, 29]. Virtual fixtures is a technique to improve the efficiency of human-robot co-manipulation by
constraining human motion in task-relevant trajectories [30]. These virtual fixtures can be defined efficiently us-
ing demonstration. Raiola et al. [31] introduced a framework of multiple probabilistic virtual guides learned from
demonstrations. This framework allows the human to “escape” from the original constraint to a new task. Bodenstedt
et al. [32] presented a semi-autonomous strategy, where the human control tool translation and robot is responsible
for its orientation. To obtain more functions on virtual guidance, Nemec et al. [33] introduced the integration of
Frenet–Serret frame into SS-DMP [34], where it can embed the compliance according to the learned variance and
speed of motion. The commonality of the above research is that motion is planned in the Cartesian coordinate system,
which limits its extension application in complex geometric operations such as polishing curved surfaces or grasping
objects, where different objects may require different strategies to control the orientation of the robot end-effector
while approaching the object. Our approach is advantageous for this purpose by providing different virtual guides
according to the shape of the object.

2.4. Optimal Control

The optimal control approach can be used to generalize motion to new task parameters by formulating the cost as
a function of these parameters and searching for an optimal solution over joint/task spaces. Different approaches have
been proposed to solve optimal control problems, see [35] for an overview. Here, we focus on the linear quadratic
regulator (LQR) and on the iterative LQR (iLQR) extension [36, 37, 38]. These methods leverage Gauss–Newton
optimization and dynamic programming to provide controllers either as open-loop commands or as a feedback con-
troller with varying gains. M. M. Hassan et al. [39] have presented a general formulation and numerical scheme for
the fractional optimal control problem of distributed systems in spherical and cylindrical coordinates. However, this
approach has no relation to motion planning and divides the spherical into axial and complete symmetry to discuss.
Kobilarov et al. [40] introduced the variational discretization of the dynamics to generate optimal trajectories on a
given Lie group by providing its Lagrangian, group structure, and description of acting forces. Here, we will derive
how the LQR/iLQR is used in motion planning problems in the cylindrical and spherical coordinate systems using
Riemannian manifolds.

Compared to methods discussed in the reinforcement learning (RL) literature, optimal control and trajectory opti-
mization problems can often be more practical when targeting high-dimensional real robot applications. In this article,
we adopt an intermediary strategy by describing the evolution of the system in a path-dependent but time-independent
fashion. To do this, a phase variable s is used as an auxiliary term to describe the evolution of the system as a function
of the robot current state s(x), yielding a time-independent controller u = f (x, s(x)). The use of a phase variable has
previously been motivated in physical human-robot interaction [41] and bimanual force-motion control [42].

Standard LQR/iLQR usually utilizes only one coordinate system for all time steps, which can be located either at
the end-effector or the base of the robot, depending on the functionality. Previously, we have shown the advantage of
using multiple coordinate systems located at different landmarks such as objects [43]. In that work, we defined the
LQR problem in the task space and used an additional inverse kinematic to find the robot joint trajectory. Our work is
an extension of that approach in which the coordinate systems are not only attached to different objects or landmarks

5

but also consider different geometries. In this article, we use LQR with an impedance controller to counteract pertur-
bations and allow the robot to exploit task variations with diverse geometries. Then, we extend this approach to iLQR
for the open-loop control of non-linear systems. Our method allows the system to automatically extract shape primi-
tives and use them inside the cost functions defined in the LQR/iLQR optimization problem. This approach is similar
to the grasping notion mentioned in [44], which often describes an object using prismatic, cylindrical, and spherical
descriptors. To learn the data distribution in different manifolds, we need to consider probabilistic distributions that
take into account the specificity of these manifolds. This is achieved by using an approach to estimate Gaussian distri-
butions on Riemannian manifolds [45]. We also verify the approach in a shared human-robot interaction, where a user
drags the robot to different objects, where the robot automatically selects an appropriate grasping strategy based on
the shape characteristics of the target, and helps the user achieve the manipulation task (shared control with adaptive
virtual fixtures).

3. Background

3.1. (iterative) Linear Quadratic Regulator control ((i)LQR)
The OCP formulation can be used to solve trajectory optimization and planning problems, by considering a time

window covering the entire task. In an OCP, a cost function is minimized with respect to control commands u over
a time window, subject to a function describing the system evolution by starting from an initial state x0. The general
discrete form of OCP consists of a cost

c(x,u) =

T−1∑
t=1

ct(xt,ut) + cT (xT ,uT), (1)

subject to the dynamics
xt+1 = f (xt,ut), (2)

where x =
(
x>1, x

>

2 · · · , x
>

T

)
>

and u =
(
u>1,u

>

2, · · · ,u
>

T−1

)
>

.
An LQR problem is a subclass of OCPs, where the cost is quadratic and the dynamics is linear, namely

c(x,u) =

T∑
t=1

‖xt‖
2
Qt

+ ‖ut‖
2
Rt
, (3)

s.t. xt+1 = At xt + Btut. (4)

The (i)LQR approach allows the task to be specified as a sparse set of viapoints describing the position and
orientation of the robot end-effector, which can be solved efficiently as an optimization problem. This problem has an
analytical solution, which can be derived either as a batch formulation or as a recursive one. The latter, which is also
called dynamic programming (for linear systems) and differential dynamic programming (for non-linear system) [46],
can provide feedback gains as well. Feedback from the controller is an important term in online planning problems
to cope with external disturbances in motion. This article extends this term to the problems occurring on manifolds,
not only for perturbations, but also for exploring compliance in a particular dimension. We have described the batch
version in Appendix A and have shown how it can be modified to non-quadratic cost and/or non-linear dynamics. In
Sec. 4.2, we will modify it to be used on manifolds. Without any loss of generality, the same modifications can be
applied to the recursive version.

3.2. Riemannian manifold
Daily objects with complex shapes can be approximated by combinations of geometric primitives such as spheres,

cylinders and prismatic objects. Prismatic objects can easily be represented in Euclidean space by scaling the three
orthogonal axes, but this is not an appropriate choice for other shapes. A Riemannian manifold is a smooth and
differentiable manifold equipped with a positive definite metric tensor, where a sphere and a cylinder can be more
accurately represented in spherical and cylindrical coordinate systems. A smooth d-dimensional manifold M is a
topological space that locally behaves like the Euclidean space Rd. Most common manifolds in robotics are homo-
geneous, providing simple analytic expressions for exponential/logarithmic mapping and parallel transport. There are

6

many examples of Riemannian manifolds that can be employed in robot manipulation [45]. In this article, we just in-
troduce the sphere manifold Sd characterized by constant positive curvature. The Sd manifold can be used in robotics
to encode directions or orientations. Unit quaternion S3 is used to represent end-effector (tooltip) orientation [47],
and S2 is used to represent unit directional vector perpendicular to surfaces (e.g., for contact planning). Articulatory
joints can be represented on the torus S1 × S1 × · · · × S1 [48, 49]. For the multiple types of coordinate systems,
including Cartesian, Cylindrical, and Spherical coordinate systems, we can also use the sphere manifold to represent
the position in different coordinates (Cartesian → R3, Cylindrical → S1 × R2 and Spherical → S2 × R1). We use
M1 for Cartesian,M2 for Cylindrical andM3 for Spherical manifolds in the remainder of the article to simplify the
notation.

For each point p ∈ M on the manifold, there exists a tangent space TpM that locally linearizes the manifold.
The curve with the minimum length between two points on a Riemannian manifold is called geodesic. Similar to
straight lines in Euclidean space, the second derivative is zero everywhere along a geodesic. The exponential map
Expx0

: Tx0M → M maps a point e in the tangent space of x0 to a point x on the manifold, so that x lies on the
geodesic starting at x0 in the direction e. The norm of e is equal to the geodesic distance between x0 and x. The
inverse map is called the logarithmic map Logx0

: M → Tx0M. The exponential and logarithm maps for x, y ∈ Sd

can be computed analytically as (see also [50])

y = ExpS
d

x (e) = x cos(‖e‖) +
e
‖e‖

sin(‖e‖), (5)

e = LogS
d

x (y) = arccos(x>y)
y − x>yx
‖y − x>yx‖

. (6)

There is no exponential map in the Cartesian space, and the logarithmic map for the Cartesian spaceM = Rd of
d dimensions in general is

LogR
d

x (y) = y − x. (7)

Note that there are two ways to express the point belonging to the Sd, one is using the angle between each axis to
locate the position and the other way is to use the unit vector to report its projection on different axes. For example in
S1 (
S2), we can use θ

(
{θ, φ}

)
to express the angle between a vector and the positive side of x

(
{x, z}

)
direction or we

can use the projection of the vector in the x and y directions, such as I = {Ix, Iy}
(

the projection of the vector in the x,
y and z directions I = {Ix, Iy, Iz}

)
, where the norm of I is 1. In our article, we choose the vector way to express the

point on the manifold.

3.3. Gaussian Distribution on a Riemannian manifold
We construct the Gaussian distribution on the manifold by using an iterative strategy to estimate the mean of the

Gaussian as a centroid on the manifold and use the covariance represented in its tangent space to express the variation
of the data [51, 52, 47]. The distribution is denoted by

NM(x|µ,Σ) =
(
(2π)d |Σ|

)− 1
2 exp

(
−

1
2

Logµ(x) Σ−1 Logµ(x)
)
, (8)

where a point on the manifold is denoted as x∈M, the mean of the distribution (origin of the tangent space) is denoted
as µ∈M, and the covariance matrix represented in its tangent space is Σ ∈ TµM.

The mean of a set of N data points on the manifold is obtained by an optimization problem

min
µ

N∑
n=1

Logµ(xn)> Logµ(xn), (9)

whose solution can be found using an iterative approach, such as Gauss–Newton, as

e =
1
N

N∑
n=1

Logµ(xn), µ← Expµ(e), (10)

which should be repeated until convergence. With the obtained mean, the covariance matrix in its tangent space can
be expressed as Σ = 1

N
∑N

n=1 Logµ(xn) Log>µ(xn), see [45] for details.

7

4. Proposed Method

4.1. Manifold selection
We assume that we have gathered a set of data such as D = {d1, d2, . . . , dD}, where D is the total number of

demonstrations. The choice of the manifold to express the demonstrations affects the learning and control procedure.
So the first step is to find the most relevant manifold to represent the task. We assume that this manifold is time-
dependent, and use the same manifold for all the time steps in a stage. In the following, we describe the procedure of
selecting a manifold at time t, and in the experiment part (Sec. 5), we will explain how this time can be selected. So,
we select the corresponding data from the demonstrations such as

dt = {d1
t , d

2
t , . . . , d

D
t },

where di
t is the t-th element from the i-th demonstration. Using the method described in Sec. 3.3, we construct

Gaussian distributions for each dt on different candidate manifolds n ∈ {1, . . . ,N}, where N is the number of co-
ordinate systems. We then choose the coordinate system n∗ that shows the most regularities between the different
demonstrations (winner-takes-all strategy), namely

n∗t = arg min
n
|Σn,t |, ∀n ∈ {1, . . . ,N}, (11)

where |Σn,t | is the determinant of the covariance matrix Σn,t. For 2-D systems, N = 2 (M1,M2), and for 3-D systems,
N = 5 (M1,M2−x,y,z,M3), whereM2−x is anM2 manifold whose main axis is in the x direction (see Fig. 3(a)).

4.2. OCP in different types of coordinate systems
Both (1) and (2) are defined in Euclidean space in an standard OCP. Either the cost function or the dynamic

equation can be modified to use the notion of manifold in this formulation. We can define state residual terms en∗,t in
(1) at time t on the desired manifold n∗ as

en∗,t = LogMn∗ ,t
µn∗ ,t

(xn∗,t), (12)

where another meaning of the residual term is the state represented on the tangent space of the target state µn∗,t

learned from demonstrations. xn∗,t is the state on the manifold and it is a vector composed of elements xd,n∗,t, where d
represents each dimension of the manifold. The cost function for reaching task on Euclidean space, for example, can
be defined with quadratic residual error ct(xt,ut) = ||xt − µt ||

2
Qt

+ ||ut ||
2
Rt

, where µt is the tracking state at time t, Qt is
the precision matrix at time t, and Rt is the effort weight matrix. The modified version of this on other manifolds can
be described as

c∗t = ||en∗,t ||
2
Qn∗ ,t

+ ||un∗,t ||
2
Rt
, (13)

where Qn∗,t is the precision matrix of the data at time t calculated on the n∗ manifold, which can be defined from
the demonstrations with different approaches. In Sec. 5, we will describe two methods to determine this matrix
inspired by the minimal intervention method in [22]. This problem can be solved with the iLQR method described
in Appendix A. Other than the cost function, the dynamic equation of the system can be expressed on the manifold.
This idea makes sense only when the state variables are defined in the desired manifold, unless for other cases (e.g.,
states are defined as the robot’s joint angles), we keep the dynamic equation the same as before and only modify the
cost function. However, the robot end-effector can be modeled as a point mass system on different manifolds. The
system can be represented onM2 andM3 in similar ways as onM1 by projecting the state from the manifold to the
tangent space defined on the current state or target state. The evolution of the system then can be described linearly as

en∗,t+1 = en∗,t + un∗,tdt, (14)

xn∗,t+1 = ExpMn∗ ,t
µn∗ ,t

en∗,t+1. (15)

We have x2,t = {rt, Ix
t , I

y
t , zt} and x3,t = {rt, Ix

t , I
y
t , I

z
t }, where rt represents the radius of circle or sphere and zt represents

the height of cylinder. The state en∗,t, control command un∗,t, precision matrix Q, control weight R and the cost
function are defined on the tangent space of µn∗,t. Therefore, the OCP problem applied in the tangent space keeps
the same property as in the Euclidean space. In particular, the stability property of the system is maintained when

8

Table 2: The manifold of different coordinate systems in 2D and 3D spaces.

2D Space (N = 2) 3D Space (N = 5)

Cartesian Polar Cartesian Cylindrical Spherical
Position M

pos

1 ∈ R
2 M

pos

2 ∈ S
1 × R1 M

pos

1 ∈ R
3 M

pos

2−x,y,z ∈ S
1 × R2 M

pos

3 ∈ S
2 × R1

Orientation Mori
1 ∈ S

1 Mori
2 ∈ S

1 Mori
1 ∈ S

3 Mori
2 ∈ S

3 Mori
3 ∈ S

3

(a) Different manifolds illustration (b) Base frames of different manifolds

Figure 3: (a) shows the manifold considered in this article includingM1 (i.e., R3),M2−x,y,z (i.e., R2 × S1) andM3 (i.e., R1 × S2). (b) shows the
base frames defined in different manifolds.

extending it to a Riemannian manifold. Due to the involvement of the transformations (12)–(15), it is hard to construct
the batch version of the state function, where there is a coupling relationship between each state. Therefore, we select
the recursive version and update the state using the control command as

un∗,t = −Kn∗,ten∗,t, (16)

where Kn∗,t is calculated using a Riccati equation.
In our experiments, the full pose in these manifolds consists of the position and orientation part like xn∗,t =

[xpos

n∗,t
>, xori

n∗,t
>]> and µn∗,t = [µpos

n∗,t
>,µori

n∗,t
>]>. We list the notation of manifold represented in 2D and 3D space in Table 2,

where Sd and Rd represent sphere and Cartesian manifolds of dimension d, respectively. (S1 × R1 consists of polar
angle and radius; S1 × R2 consists of polar angle, radius and height; S2 × R1 consists of polar angle, azimuth angle
and radius.)

The Cartesian product property of Riemannian manifolds (Mn∗ =M
pos

n∗×M
ori
n∗) can simplify the distance calculation

including position and orientation of the cost function, where it follows the composition rule

LogMa×Mb
µ (x) =

[
LogMa

µa
(xa)

LogMb
µb

(xb)

]
. (17)

We use a local frame to express the orientation of the end-effector, where the local base frame is constructed
according to its position on the manifold by a parallel transport of the basis O defined at the origin of the manifold,
see Fig. 3.

4.3. Phase Estimation
A variety of learning from demonstration (LfD) methods have been utilized to directly reproduce the observed

motion. Task-parametrized Gaussian mixture models (TP-GMM) [43] and stable estimator of dynamical systems
(SEDS) [53] are two examples of these approaches, with the former being time-dependent and the latter being time-
independent. Although time-independent methods are more suitable for physical human-robot interaction scenarios,
these methods can suffer from limited generalization capability when reproducing motion over highly varying task
parameters.

To improve the generalizability of the learned system, optimal control methods can be employed. However,
finding a time-independent solution for optimal control problems (OCPs), referred to as a policy, usually requires

9

solving the Hamilton equation in high-dimensional state space. This task can be computationally expensive and
requires significant data and training to achieve a satisfactory solution.

In this paper, we use a phase estimation method to make the controller time-independent, without having to
consider a full policy estimation problem. In order to circumvent the computational burden of finding a global policy
for the system, our approach involves solving a computationally inexpensive optimization method during reproduction
to obtain a local policy. This local policy can be used to generate adaptive movements while avoiding the expenses
associated with finding a global policy for the system.

We decouple the time variable of the system, a.k.a. phase, from the real-world clock. Using an additional phase
variable is not new in robotics, and it has been investigated in other works, such as dynamical movement primitives
(DMP) [54], where the phase variable is defined as a function of the world clock. Here, we define it as a function of
the robot’s current state, and the desired trajectory learned from demonstrations xd. This trajectory is a time-series of
variables which starts at t = 0 and finishes at t = T . Without any loss of generality, it can be assumed to start at phase
s = 0 and end at s = 1. We can define this trajectory as a function of the phase as xd(s). The phase estimation then
can be mathematically formulated as

s∗t = argmin
s

LogMxr
t
(xd(s)), (18)

where xr
t is the robot’s current (full or partial) state. This variable does not need to be the full state as some states

do not matter in the task (do-not-matter directions). There are different approaches to finding the phase, such as
[41]. We found that the nearest neighbor method can perform well for the tasks we have in this article. However,
the aforementioned method can be problematic for tasks with recurrent states, such as trajectories that contain loops,
as it can hinder the optimization efficiency of (18). To address this challenge, we propose two solutions. The first
solution involves augmenting the state space to a higher dimensionality by introducing additional state variables, such
as velocity, task or configuration variables, orientation, or sensory data, such as force. The second solution entails
constraining the solution of (18) to be local. While many optimization methods can only provide local optimal due
to their iterative nature, this constraint can be further enforced by regularizing the phase values around their previous
value as

s∗t = argmin
s

LogMxr
t
(xd(s)) + λ||s − s∗t−1||

2, (19)

where λ denotes the penalty coefficient, and st−1 represents the solution of (19) at the previous time. The optimizer is
encouraged to explore proximal solutions and choose the closest phase among the recurrent states by regularizing the
phase values.

At each time, we update the system time with s∗t . If the user holds the robot, s∗t will remain constant as xr
t will stay

the same. So, the robot will not try to increase the force or stop the task, as it can be the cases for the time-dependent
controller mentioned above.

5. Experiments

We first analyze the controller proposed in different coordinate systems by introducing a point-mass reaching
task. For the whole pipeline, we took grasping and box-opening as two typical manipulation tasks in our daily life to
validate our approach in the presence and absence of perturbation, both in a simulation and on a real robot. As a last
experiment, we verify our method on a shared control human-robot collaboration using a virtual guidance system and
policy extraction utilizing the phase variable. We used a 3-DoF planar robot for the simulation and a 7-DoF Franka
Emika manipulator for the real robot experiment.

5.1. LQR reaching task in different coordinate systems
This experiment evaluates the effect of defining the optimal control problem on different manifolds. The system

has to reach a target starting from ten random points in the space. We compare the results in multiple coordinate
systems with equal precision Q and control weight R in each dimension. The results are shown in Fig. 4. We can see
how the choice of the manifold for the optimization problem can help the system respect the object geometry. We
observe that the point-mass system approaches the target along a sphere manifold with a uniformly decreasing radius
in M2 and M3, while the resulting trajectories in M1 are straight lines. Fig. 5 shows how adjusting the precision
weights for each dimension can affect the resulting trajectories. Although the motion of the point-mass system will
reach the dimension with higher precision primarily, it will respect the shape of the manifold.

10

Figure 4: Point reaching trajectory inM1 (i.e., R3),M2 (i.e., R2 × S1) andM3 (i.e., R1 × S2).

(a) (b)

Figure 5: Point reaching trajectories in (a)M2 (i.e., R2 × S1) (view along the axis) and (b)M3 (i.e., R1 × S2) with different precision matrices.

5.2. Grasping simulation

This experiment is a simulated planar grasping task. We validate our approach with open-loop (velocity controller)
and feedback control (impedance controller), showing that the grasping movements can maintain the demonstration
characteristics in the presence and absence of perturbations. We generated six sets of demonstrations manually and
each demonstration consists of three viapoints representing three stages of the motion. We then construct Gaussian
distributions for each stage of the task and the extracted distribution is used to define the stepwise reference with
the precision matrix in M1 and M2, as shown in Fig. 6. In the left plot of Fig. 6(a), we observe that the means of
positions for different stages of the task represented in M1 almost overlap, with significant covariances losing the
feature of the circular distribution of the data points. Similarly, in the left plot of Fig. 6(b), there are large variations
in orientations when expressed in M1. In contrast, for the representation in M2, as shown in the middle plot of
Fig. 6(a), the distribution of positions has a very low variance along xpos

1,2 while being well separated, reflecting the
decrease of radius while approaching the object. The high variance along xpos

2,2 means that the robot can grasp the
object from any direction along the geometric manifold of the chips can. Similarly, in the right plot of Fig. 6(b),
low variance in orientation reflects that the gripper kept orienting toward the object while approaching it, similarly
to the demonstration. We use the determinants of the covariance matrices in the two coordinate systems to select a
coordinate system at each stage of the motion, as shown in Table 3. M2 is here correctly selected as best manifold to
express the grasping motion.

To reproduce similar motions with the robot, we set four random initial robot states and substitute the Gaussian
distributions for each stage of the task into the cost function of the iLQR framework. Here, the robot should approach
the object while pointing to it. Fig. 7 compares the results of this experiment on two manifolds and for two strategies.
We observe in Fig. 7(a) that the reproduced motion becomes irregular withM1. In contrast, onM2 (the selected man-
ifold), the robot generates the desired behavior (pointing toward the object while approaching it), correctly exploiting

11

0 2
0

2

4

6

-2 0 2

-2

0

2

-2 0 2

-2

0

2

(a) Positions of the end-effector w.r.t. the object to grasp

-1 0 1 2 3

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

(b) Orientations of the end-effector w.r.t. the object to grasp

Figure 6: Distributions of the three sets of stepwise reference (◦, +, ?) inM1 andM2. The indices in the graphs correspond to xd,n. (a) The position
is represented in two coordinate systems. The ellipses represent the Gaussian distributions for the three different stages of the motion (contours of
one standard deviation). The contours of the Gaussian inM2 is also visualized inM1 to show that this distribution is a better fit (compare the left
and right graphs). (b) The orientation is represented in the base frame of the two coordinate systems. The solid lines represent the variance in the
tangent space of the S1 manifold, and the points represent the mean on the S1 manifold.

the variations in the do-not-matter directions.
To further demonstrate the advantage of our approach, we introduce the feedback controller with variance learned

from the demonstration to endow the robot with compliance behavior, with a rejection of external perturbations lever-
aging the optimal coordinate system selected by the algorithm. From Fig. 7(b), we observe that the motion (solid
black line) regenerated from the perturbation (cyan dots) correctly keeps a pointing direction toward the target while
approaching the object rather than returning to the initially planned trajectory (dashed black line).

5.3. Box-opening simulation

We want to teach the robot to open a box: a task that should be efficiently described in the M2 manifold. We
generated one demonstration of the box opening movement. To simplify the process, we segmented the demonstration
into these different stages manually and use the data at each stage to construct Gaussian distributions as stepwise
references with its precision matrix (via-points) inM1 andM2. Fig. 8(a) shows the distribution represented inM1
andM2 and the distribution ofM2 visualized inM1. The latter clearly shows that it can cover the circular spread of
the data points. M2 is selected by the algorithm as the most representative manifold, which keeps the radius constant
during the opening stage (small variance of xpos

1,2). The variation values for the viapoints on the two manifolds are
represented in Table 3. The motions reproduced by the robot usingM2 are shown in the bottom-left plot of Fig. 8(a).

5.4. Autonomous grasping with the Franka Emika robot

12

(a) Open-loop control (b) Feedback control

Figure 7: (a) The grasping movement generated by open-loop control is simulated inM1 andM2 (selected coordinate system) from four different
initial states of the robot generated randomly. The movements of the robot are depicted with different shades of gray, with the lightest depicting
the initial state of the robot. (b) The grasping movement is generated by feedback control, where the perturbation happens for a short duration as
labeled by the cyan points. The movements with and without perturbation are depicted with red and grey shades. The initial and final states are
depicted in non-transparent.

Table 3: Determinants of covariance matrices at different stages of the motion for the grasping and box-opening simulations.

Grasping / Box-opening
P1 P2 P3

M1 3.2e1 / 4.3e-6 2.2e0 / 3.0e-3 3.5e-4 / 6.8e-6
M2 3.9e-5 / 1.1e-6 2.0e-5 / 8.2e-8 1.2e-6 / 1.9e-6

We then implemented the grasping experiment on the real robot. We used six objects with different shapes and
placed them randomly within the robot’s workspace. We tracked their location using Aruco markers [55]. The task
is deemed successful if the robot can reach the object from a home position, grasp it firmly, and return to the home
position. We used kinesthetic teaching to gather six demonstrations for each object. Each demonstration consists of
spatio-temporal data for the robot end-effector presented in the object frame, see Fig. 9. We use a GMM on the spatio-
temporal data onM1 manifold to divide the task into four stages (number of stages chosen manually). We call this
distribution a staging GMM to distinguish it from the data distribution (distribution on the manifold) represented on
different manifolds. We then used GMR with the staging GMM to reproduce a set of references for each manifoldM1,
M2−x,M2−y,M2−z andM3. The mean values of the Gaussians in the staging GMM also contain the time variable.
We also used the variation modeled with data distribution on each desired manifold to construct the cost function of
the OCP. The precision matrix Qn∗,t at each time step is obtained by superposition of the precision matrices evaluated
at each desired manifold as

Qn∗,t =
1
zt

i=r∑
i=1

wi,tQn∗i ,

wi,t = (t − µi
t)
>Σt(t − µi

t), zt =

i=r∑
i=1

wi,t,

(20)

where µi
t and Σt are the mean value and the covariance matrix at time step t, obtained from the i-th Gaussian in the

staging GMM, respectively, and Qn∗i is the precision matrix obtained on the desired manifold of the i-th stage.
Determinants of the covariance matrices decide the type of coordinate systems at each stage. These values are

presented in Fig. 10, whose apparent differences can be seen according to the object shapes. Our approach selects
M2−z and M1 to represent the motion in the case of cylindrical shapes (chips can and bowl) and prismatic objects
(the Rubik’s cube, the cracker box, and pitcher handle), respectively. It can also be seen in Fig. 11(d) that the selected
manifold can change during the motion, as for the baseball object. We observe that during the first stages of the motion

13

Table 4: Success rates for grasping objects with different shapes.

M1 M2−x M2−y M2−z M3 OptimalMn∗

Chips Can 0/50 0/50 0/50 45/50 30/50 42/50 (M2−z)
Baseball 2/50 0/50 0/50 41/50 45/50 44/50 (M2−z+M3)

Bowl 0/50 0/50 0/50 42/50 2/50 45/50 (M2−z)
Rubik’s Cube 47/50 0/50 28/50 34/50 39/50 46/50 (M1)
Cracker Box 45/50 0/50 23/50 43/50 26/50 47/50 (M1)

Pitcher 45/50 38/50 0/50 40/50 33/50 46/50 (M1)

(P1, P2, and P3), although M2−z is selected as the proper manifold, the determinants of M2−z and M3 are close to
each other. The choice of the manifold changes to M3 for the last stage P4. One reason for this switching can be
described by external or environmental geometric factors, such as the task shape, robot gripper, and robot geometry.
The robot’s motion in the first stage is influenced by other constraints, such as avoiding the table or other external
obstacles or preferring some directions over others because of the robot’s kinematic shape and configuration. These
constraints can influence the motion to favor a cylindrical manifold over a spherical one. We can also observe that the
reference (dashed line) is not precisely tracked by the robot (solid line), which means that the robot generalizes the
motion to new situations guaranteeing key features of the task while reducing the amount of effort, thus ignoring the
tracking of less essential features.

0 1 2

0

1

2

1.9 1.95 2 2.05 2.1
0

0.5

1

1.5

0 1 2

0

1

2

(a) Positions of the end-effector w.r.t. the box to open

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) Orientations of the end-effector w.r.t. the box to open

Figure 8: Box-opening simulation. The indices in the graphs correspond to xd,n. (a) Gaussian distributions for positions in the three stages of the
motion, expressed inM1 andM2. The trajectories generated by using these two options are shown in the bottom-left plot, where P1, P2, and P3
represent the three stages. (b) Gaussian distributions for orientations in the three stages of the motion, expressed inM1 andM2.

We generated 50 random poses for each of the object from the distribution (modeled with a Gaussian) observed in
the demonstrations to validate the generalization ability of our approach to new poses in the simulation. The objects
are always located at the origin, as the demonstrations are gathered in the object frame.

The proposed method is compared to the benchmark solution of using only one of the manifolds. The reproduced
motions are shown in Fig. 12, where we showcase the typical baseball grasping results. The object orientation makes
the motion on M1 to be undesirable, as the robot tries to grasp the object from only a specific orientation. The
performance of the system onM2−z andM3 is close to each other. However, the system performs slightly better on
M2−z in the first stages of the task and onM3 in the last stage. We summarized the success rate of this experiment for
all objects on all manifolds in Table 4. These results gathered simulations from 1800 trials (50 (random object pose)×
6 (objects)×6 (5 manifolds plus the optimal one)), where bold numbers are for success rate more than 80%. Although

14

Phase1 Phase2 Phase4Phase3
Figure 9: Demonstrations for the grasping task with six different objects. The demonstrations are shown in the object frame and the trajectories
with different colors are clustered with a GMM.

Figure 10: Determinants of the covariance matrices in the four stages (in logarithm scale). Blue, orange, green, red and purple bars represent the
values ofM1, M2−x , M2−y ,M2−z andM3. The manifold with the smallest determinant is the selected coordinate system for each stage of the
movement.

15

(a) (b)

(c) (d)

Figure 11: Timeline graphs of four typical objects. The solid lines represent the references in M1, M2−z and M3 generated from a GMM with
four components (four consecutive stages of the motion depicted in red, green, blue and yellow). The dashed lines represent a grasping movement
generated from a different initial pose, by using the selected manifold at each time step. The bottom plot shows the selected manifold for the
different time steps (here,M2−z thenM3 are selected by the algorithm).

our proposed method chose one of the five manifolds, note that there may be a slight difference in the final results as
we placed the target pose randomly (for each manifold, we had different target points).

We use a Cartesian impedance controller to track the planned end-effector motion defined as a virtual point-mass
to evaluate the system performance under external disturbances. We set the stiffness and damping parameters of the
end-effector to Kp = diag(1200, 1200, 1200, 100, 100, 100),Kv =

√
2Kp/2. We use this impedance controller as the

low-level controller and update the path using the feedback gains calculated with the OCP in the selected manifold.
The perturbed motions are shown in Fig. 14. The robot can regenerate the grasping movement while keeping the
motion characteristics of the demonstration. For example, in the case of the chips can and baseball objects, the robot
always points to the object along the object manifold with high compliance, which allows the robot to move along
that manifold, even in case of external perturbations. For bowl grasping, in addition to the above feature, the robot
can also find the nearest edge to grasp based on the current state during the perturbation. For prismatic objects, the
robot has low compliance outside the planned linear grasping trajectory. Additional reproduction attempts on the real
robot are presented in Fig. 13 and in the accompanying video.

5.5. Autonomous box opening with the Franka Emika robot

We repeated the same protocol in a box-opening task to test our approach. We attached Aruco markers to the
demonstrator’s hand to track the hand motion and gathered six demonstrations. The task is considered successful if
the box is opened with a constant opening radius with the gripper not applying unnecessary excessive force on the
lid. We used a GMM to extract four stages of the task and employed the OCP approach described in Sec. 5.4 to
track the trajectory generated by GMR. Snapshots of this task are shown in Fig. 18(a) (see the complete process in
the accompanying video), and Fig. 15 presents encoding and generalization results. The reproduced movements are
shown in Fig. 16. The experiment shows that the skill can be generalized to different robots and box configurations.
The robot can keep a constant distance from the axis of rotation, which is an essential property of the opening stage

16

(a) (b)

Figure 12: (a) Reproduced trajectories by using the optimal manifold method (blue solid lines) and by using only one manifold (M1 (red dashed
lines), M2−z (green dot lines) and M3 (green dashed dot lines)) in 3D space. The arrows represent the directions of the end-effector. (b) The
projected trajectories from 3D space to three orthogonal planes, with the arrows representing the orientation.

(a) Open-loop Control (b) Feedback Control

Figure 13: The learned grasping manipulation trials with random placements of the objects (with and without human perturbation).

(the third stage). This property cannot be fulfilled inM1 orM3, where the robot either slides along the radial direction
or fails to reach the edge of the object, which will cause potential damage to the robot or failure to open the box. Other
tasks, such as opening most of the doors, steering wheels, or turning a book page, can be described with similar skills.

We use an impedance controller to perform the opening movement under perturbations in radius and axis direction.
We keep the same protocol and parameters as for the grasping experiment. We show the reproduced motions in Fig. 17
and Fig. 18(b) (also in accompanying video). The robot can open the box successfully with perturbations in different
directions, except for the opening stage, where the robot is pulled away from the lid. In particular, we can observe
that the user can drag the robot along the edge where it is endowed with high compliance, but has difficulty pushing it
in the radius direction. With the different compliance learned from the demonstrations, the user can use this property
to correct the robot’s movement, or the robot can avoid the obstacle while maintaining the principal characteristics of
the movement.

5.6. User-guided objects grasping with the Franka Emika robot

Finally, we tested our algorithm in a shared control scenario in which adaptive virtual guides are used to assist
the user in grasping tasks. In this application, the user guides the robot end-effector while the robot is automatically
adapting its position and orientation according to the task and to the object (adaptive virtual guides). This adaptive
shared control behavior can be helpful in diverse tasks, including remote teleoperation, shared control by kinesthetic

17

Perturbation Perturbation
Perturbation

Perturbation

PerturbationPerturbation

Figure 14: Reproduced trajectories generated by feedback control with the optimal manifold method (solid red lines), including perturbation
(dashed cyan line). The blue symbols represent the gripper of the end-effector and the grey shades represent the grasped objects.

guidance, human-robot collaborative transportation, or daily living assistance with exoskeletons and prosthetics. In
human-robot co-manipulation, virtual guides are an essential tool to assist the human worker by reducing physical
effort and cognitive overload during task accomplishment [56]. There are potential applications in this field using
our approach, where the robot grasps a target object under human guidance and applies the corresponding grasping
strategy learned from the demonstration for objects with different shape characteristics. In this experiment, we use the
phase estimation technique described in Sec. 4.3 to find the current phase of the system and extract the desired values
of active variables from the demonstrations.

We first get the desired trajectories of the robot to reach each of the objects as well as proper feedback gains using
the method mentioned in the previous sections. We use the Euclidean distance between the current position of the
robot end-effector and the desired path created for each object to estimate the current phase of the system, i.e., we
replaced xr

t = xM1,t andM = M1 in (18). With this approach, not only can we find the current phase of the system
but also which object we are approaching.

When the robot is far from all objects, the controller enters into a fully compliant behavior. When it is brought near
one of the objects (with a predetermined threshold), it actively controls the positions and orientation of the end-effector
according to the learned feedback gains. For both position and orientation, if one direction has a low variance in the
demonstrations, the robot will apply control effort to reject perturbations along this direction, effectively correcting the
guidance so that the user does not need to care about being precise in this direction (adaptive virtual barrier guiding
the robot end-effector). These virtual guides typically define a spatial region instead of a single point, which still
allows the user to remain in charge of the object being selected for grasping, of the approaching part of the motion
and of the dynamics used to approach and manipulate the objects. Note that the feedback gains in each direction
are computed based on the variations in the demonstrations at some δs ahead of the current phase determined by the
phase estimation algorithm. This anticipative behavior is adjusted manually to provide smoother shared control by
compensating for the frictional effects of the robot.

We choose two shape primitive objects, the chips can and the baseball, which we place randomly within the robot
workspace. We first drag the robot near the baseball and then near the chips can. We observe that the robot can be
moved in free motion when it is far from both objects. When it is close to the baseball, the user can still easily rotate
the end-effector along the spherical manifold while the gripper points to the baseball all the time. In contrast, when

18

(a) Demonstrations (b) Determinants of covariance matri-
ces

(c) Timeline evolution

Figure 15: (a) Demonstrations of the box-opening movement, with different colors representing different stages of the movement. (b) Determinants
of covariance matrices in the four stages (in logarithmic scale). The manifold with the smallest determinant is the selected coordinate system for
each stage of the movement. (c) In the first three plots, the solid lines represent the references forM1,M2−y andM3. The dashed lines represent
a grasping movement generated from a different initial pose, by using the selected manifold at each time step. The bottom plot shows the selected
manifold for the different time steps (here,M1 thenM2−y are selected).

Figure 16: Reproduced box-opening movements for different initial states.

it is close to the chips can, the gripper points horizontally toward the object. It only allows the user to rotate the end-
effector around the central axis of the chips can. The resulting shared control behavior provides a grasping assistance
that automatically adapts to the shapes and affordances of objects, which are learned from only few demonstrations.
The whole process is shown in Fig. 19 and in the accompanying video.

6. Discussion

One of the biggest challenges in LfD is that we are limited to few demonstrations. Typically, the recorded demon-
strations cannot describe all the aspects of the task if we try to learn those in a black-box manner. These challenges
motivated researchers to gather information from other sources, such as providing structures and representations that
can generalize to a large range of manipulation skills.

In this article, we proposed a winner-takes-all strategy by estimating which manifold (coordinate system) rep-
resents the task in the most consistent manner. We showed how this method provides better compliance behavior
by exploiting the property of do-not-matter directions. Compared to standard task-parameterized models [43], our
approach explores the use of multiple types of coordinate systems that can be attached to multiple objects, rather than
using a single type of coordinate systems attached to multiple objects.

We showed that to obtain curved shape distributions following the shapes of circles or spheres, a single Gaussian
is enough by considering a variety of manifolds. This is useful to specify tracking behaviors such that the system tries
to reach a desired curved area instead of a single point (e.g., any point around a circle instead of a single point). If we

19

Figure 17: Reproduced box-opening movements using impedance feedback control in the optimal manifold combination under the perturbation.
Blue symbols represent the gripper of robot and black arrows (→), dot circles (©•) and cross circles (×) represent the perturbation direction.

(a) Open-loop Control (b) Feedback Control

Figure 18: The learned box-opening manipulation trials with random placement of the box (with and without human perturbation).

would specify these shapes as a cost function in a standard Cartesian coordinate system, the use of only one Gaussian
distribution would not be possible. We could use a mixture of Gaussians to approximate these curved shapes, but
we would typically need multiple demonstrations to estimate this mixture model and the modeling as a circle would
remain a crude approximation. Indeed, using a model such as a GMM or a NN can hardly extract distinctive geometric
features in Cartesian space from a small set of data. In contrast, we showed that our approach can rely on very few
demonstrations, by exploiting the shape structure of the object and/or task (Fig.6(a) and Fig.8(a)). This allows us to
model these primitive geometric shapes more efficiently and systematically by describing the observed demonstrations
in other types of coordinate systems.

Defining an appropriate cost function to represent the desired task is a key challenge in optimal control. This
challenge becomes even more crucial in scenarios where the robot is expected to interact with a user, as the robot’s
behavior should not only accomplish the task but also be easily comprehensible. To address this issue, we have previ-
ously proposed a solution in [22], where demonstrations are utilized to capture the variations in human motion. This

Figure 19: Shared control with virtual guides for the collaborative grasping of different objects.

20

article extends this principle by leveraging the observed variations to learn a feedback controller from full precision
matrices in multiple coordinate systems, which extends the conventional use of iLQR to Riemannian manifolds. Then,
the robot can identify appropriate compliance behaviors in each direction, achieving a more intuitive and human-like
behavior. we chose to keep a single manifold to represent the task at each stage of the motion (winner-takes-all
strategy) and to ignore the information modeled in other manifolds. We use OCP to increase the generalizability of
the system. Some common approaches such as NN, linear gaussian, and parametrized representations usually do not
consider these aspects very well. However, instead of solving OCP in RL format which is very expensive, we use this
idea of phase variable to make it time-independent. Future work could extend this approach by fusing the information
from the different manifolds, as it is done in task-parameterized probabilistic models [43]. This could be achieved by
considering a Gaussian product on Riemannian manifold. Such a fusion strategy needs further investigations. On the
one hand, the winner-takes-all approach that we currently use might lose some intrinsic information, but on the other
hand, it acts as some form of regularization, which might be important when only few demonstrations are considered.

In the proposed experiment, each shape primitive provides a different grasping strategy by prioritizing directions
non-identically, which improves the compliance behavior of the system. This fact is shown in the virtual guidance
experiment. The phase-estimation module plays an important role in this task by providing better human-robot in-
teraction. This technique allows us to implement the solution of OCP as a time-independent policy that does not
require expensive computation. The phase estimation is done after the optimization without impacting it. It also does
not add much computational load. For this task, the phase estimation time was in the order of O(0.01ms). In the
proposed shared control experiment, there were only two simple shape objects in the workspace. Further work could
be extended to more complex scenarios consisting of objects composed of multiple local shape primitives. Obstacle
avoidance will also be considered in future work, where the robot can adjust the avoidance movement according to
the geometric property of the obstacle. The phase estimation technique can also be modified to consider additional
features, such as forces and orientations.

7. Conclusion

In this article, we proposed a learning from demonstration approach considering different types of coordinate
systems. The goal is to reduce the number of demonstrations required by a robot to acquire manipulation skills. The
data distribution is extracted using a model of Gaussian distributions on Riemannian manifolds. We showed how
standard optimal control formulation could be easily extended to other manifolds, by learning the structure of the cost
and the precision matrices used in the cost from a very small set of demonstrations. We showed that our approach could
be applied in both open-loop and feedback control frameworks. The feedback version can reject external perturbations
by considering the symmetries and affordances of the object, by efficiently exploiting the variations allowed by the
task. We demonstrated this approach in both autonomous and shared control tasks. In the latter, the robot can be
guided by the user while automatically determining the grasping strategy to assist the user in the different steps of
the task, according to his/her grasping intention. We compared our approach to the case of using merely one type of
coordinate system, as used in previous work. We showed that our proposed adaptive assistance could be learned from
very few demonstrations, with experimental results demonstrating the high generalization capability of the approach.
The method provides a formal and intuitive method to regulate compliance behaviors in manipulation tasks, with a
geometric structure to describe the variations allowed by the task.

Acknowledgement

This work was supported by the China Scholarship Council (CSC, No.202006120159) funded by the Major Re-
search Plan of the National Natural Science Foundation of China (No. 92048301), and by the SWITCH project
(https://switch-project.github.io/) funded by the Swiss National Science Foundation.

References

[1] E. Todorov, M. I. Jordan, A minimal intervention principle for coordinated movement, in: Advances in Neural Information Processing
Systems (NeurIPS), 2002, pp. 27–34.

21

https://switch-project.github.io/

[2] J. P. Scholz, G. Schoener, The uncontrolled manifold concept: identifying control variables for a functional task, Experimental Brain Research
126 (3) (1999) 289–306.

[3] D. M. Wolpert, J. Diedrichsen, J. R. Flanagan, Principles of sensorimotor learning, Nature Reviews 12 (2011) 739–751.
[4] D. Sternad, S.-W. Park, H. Mueller, N. Hogan, Coordinate dependence of variability analysis, PLoS Comput. Biol. 6 (4) (2010) 1–16.
[5] J. A. S. Kelso, Synergies: Atoms of brain and behavior, in: D. Sternad (Ed.), Progress in Motor Control, Vol. 629 of Advances in Experimental

Medicine and Biology, Springer US, 2009, pp. 83–91.
[6] J.-P. Laumond, N. Mansard, J.-B. Lasserre, Geometric and Numerical Foundations of Movements, Springer, 2018.
[7] D. Bennequin, R. Fuchs, A. Berthoz, T. Flash, Movement timing and invariance arise from several geometries, PLoS Comput. Biol. 5 (7)

(2009) 1–27.
[8] G. Ganesh, E. Burdet, Motor planning explains human behaviour in tasks with multiple solutions, Robotics and Autonomous Systems 61 (4)

(2013) 362–368.
[9] B. Ti, Y. Gao, J. Zhao, S. Calinon, Imitation of manipulation skills using multiple geometries, in: Proc. IEEE/RSJ Intl Conf. on Intelligent

Robots and Systems (IROS), Kyoto, Japan, 2022, pp. 7391–7398.
[10] M. T. Mason, Compliance and force control for computer controlled manipulators, IEEE Trans. on Systems, Man, and Cybernetics 11 (6)

(1981) 418–432.
[11] A. Kaiser, J. A. Ybanez Zepeda, T. Boubekeur, A survey of simple geometric primitives detection methods for captured 3d data, in: Computer

Graphics Forum, Vol. 38, Wiley Online Library, 2019, pp. 167–196.
[12] C. Romanengo, A. Raffo, Y. Qie, N. Anwer, B. Falcidieno, Fit4cad: A point cloud benchmark for fitting simple geometric primitives in cad

objects, Computers & Graphics.
[13] L. Li, M. Sung, A. Dubrovina, L. Yi, L. J. Guibas, Supervised fitting of geometric primitives to 3d point clouds, in: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2652–2660.
[14] G. Borghesan, E. Scioni, A. Kheddar, H. Bruyninckx, Introducing geometric constraint expressions into robot constrained motion specifica-

tion and control, IEEE Robotics and Automation Letters 1 (2) (2015) 1140–1147.
[15] C. Zeng, X. Chen, N. Wang, C. Yang, Learning compliant robotic movements based on biomimetic motor adaptation, Robotics and Au-

tonomous Systems 135 (2021) 103668.
[16] B. Ti, Y. Gao, M. Shi, J. Zhao, Generalization of orientation trajectories and force–torque profiles for learning human assembly skill, Robotics

and Computer-Integrated Manufacturing 76 (2022) 102325.
[17] A. G. Billard, S. Calinon, R. Dillmann, Learning from humans, in: B. Siciliano, O. Khatib (Eds.), Handbook of Robotics, Springer, Secaucus,

NJ, USA, 2016, Ch. 74, pp. 1995–2014, 2nd Edition.
[18] S. Calinon, Learning from demonstration (programming by demonstration), in: M. H. Ang, O. Khatib, B. Siciliano (Eds.), Encyclopedia of

Robotics, Springer, 2019.
[19] C. Pérez-D’Arpino, J. A. Shah, C-learn: Learning geometric constraints from demonstrations for multi-step manipulation in shared autonomy,

in: Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), 2017, pp. 4058–4065.
[20] G. Subramani, M. Zinn, M. Gleicher, Inferring geometric constraints in human demonstrations, in: Proc. Conference on Robot Learning

(CoRL), 2018, pp. 223–236.
[21] M. Vochten, T. De Laet, J. De Schutter, Generalizing demonstrated motion trajectories using coordinate-free shape descriptors, Robotics and

Autonomous Systems 122 (2019) 103291.
[22] S. Calinon, D. Bruno, D. G. Caldwell, A task-parameterized probabilistic model with minimal intervention control, in: Proc. IEEE Intl Conf.

on Robotics and Automation (ICRA), Hong Kong, China, 2014, pp. 3339–3344.
[23] J. L. Vázquez, M. Brühlmeier, A. Liniger, A. Rupenyan, J. Lygeros, Optimization-based hierarchical motion planning for autonomous racing,

in: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2020, pp. 2397–2403.
[24] H. Ren, S. Chen, L. Yang, Y. Zhao, Optimal path planning and speed control integration strategy for ugvs in static and dynamic environments,

IEEE Transactions on Vehicular Technology 69 (10) (2020) 10619–10629.
[25] Z. Ju, H. Liu, Fuzzy gaussian mixture models, Pattern Recognition 45 (3) (2012) 1146–1158.
[26] H. Zhang, Y. Leng, Motor skills learning and generalization with adapted curvilinear gaussian mixture model, Journal of Intelligent & Robotic

Systems 96 (3) (2019) 457–475.
[27] D. Zhang, W. Si, W. Fan, Y. Guan, C. Yang, From teleoperation to autonomous robot-assisted microsurgery: A survey, Machine Intelligence

Research (2022) 1–19.
[28] Z. Li, S. Zhao, J. Duan, C.-Y. Su, C. Yang, X. Zhao, Human cooperative wheelchair with brain–machine interaction based on shared control

strategy, IEEE/ASME Transactions on Mechatronics 22 (1) (2016) 185–195.
[29] J. Luo, Z. Lin, Y. Li, C. Yang, A teleoperation framework for mobile robots based on shared control, IEEE Robotics and Automation Letters

5 (2) (2019) 377–384.
[30] L. Rosenberg, Virtual fixtures: Perceptual tools for telerobotic manipulation, in: Proceedings of IEEE Virtual Reality Annual International

Symposium, 1993, pp. 76–82. doi:10.1109/VRAIS.1993.380795.
[31] G. Raiola, X. Lamy, F. Stulp, Co-manipulation with multiple probabilistic virtual guides, in: 2015 IEEE/RSJ international conference on

intelligent robots and systems (IROS), IEEE, 2015, pp. 7–13.
[32] S. Bodenstedt, N. Padoy, G. D. Hager, Learned partial automation for shared control in tele-robotic manipulation., in: AAAI Fall Symposium:

Robots Learning Interactively from Human Teachers, 2012.
[33] B. Nemec, N. Likar, A. Gams, A. Ude, Human robot cooperation with compliance adaptation along the motion trajectory, Autonomous robots

42 (5) (2018) 1023–1035.
[34] B. Nemec, A. Gams, A. Ude, Velocity adaptation for self-improvement of skills learned from user demonstrations, in: 2013 13th IEEE-RAS

International Conference on Humanoid Robots (Humanoids), IEEE, 2013, pp. 423–428.
[35] M. Diehl, H. Bock, H. Diedam, P.-B. Wieber, Fast direct multiple shooting algorithms for optimal robot control, in: M. Diehl,

K. Mombaur (Eds.), Fast Motions in Biomechanics and Robotics, Vol. 340, Springer Berlin Heidelberg, pp. 65–93. doi:10.1007/

978-3-540-36119-0_4.

22

http://dx.doi.org/10.1109/VRAIS.1993.380795
http://dx.doi.org/10.1007/978-3-540-36119-0_4
http://dx.doi.org/10.1007/978-3-540-36119-0_4

[36] A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems, Automatica 38 (1)
(2002) 3–20.

[37] D. Mayne, A second-order gradient method for determining optimal trajectories of non-linear discrete-time systems, International Journal of
Control 3 (1) (1966) 85–95.

[38] W. Li, E. Todorov, Iterative linear quadratic regulator design for nonlinear biological movement systems, in: Proc. Intl Conf. on Informatics
in Control, Automation and Robotics (ICINCO), 2004, pp. 222–229.

[39] M. M. Hasan, X. W. Tangpong, O. P. Agrawal, Fractional optimal control of distributed systems in spherical and cylindrical coordinates,
Journal of Vibration and Control 18 (10) (2012) 1506–1525.

[40] M. B. Kobilarov, J. E. Marsden, Discrete geometric optimal control on lie groups, IEEE Transactions on Robotics 27 (4) (2011) 641–655.
doi:10.1109/TRO.2011.2139130.

[41] J. Campbell, H. B. Amor, Bayesian interaction primitives: A SLAM approach to human-robot interaction, in: Proceedings of the 1st Annual
Conference on Robot Learning (CoRL), PMLR, pp. 379–387.

[42] S. Stepputtis, M. Bandari, S. Schaal, H. B. Amor, A system for imitation learning of contact-rich bimanual manipulation policies. arXiv:

2208.00596[cs].
[43] S. Calinon, A tutorial on task-parameterized movement learning and retrieval, Intelligent Service Robotics 9 (1) (2016) 1–29. doi:10.1007/

s11370-015-0187-9.
[44] C. Eppner, O. Brock, Grasping unknown objects by exploiting shape adaptability and environmental constraints, in: Proc. IEEE/RSJ Intl

Conf. on Intelligent Robots and Systems (IROS), 2013, pp. 4000–4006.
[45] S. Calinon, Gaussians on Riemannian manifolds: Applications for robot learning and adaptive control, IEEE Robotics and Automation

Magazine (RAM) 27 (2) (2020) 33–45. doi:10.1109/MRA.2020.2980548.
[46] Y. Tassa, T. Erez, E. Todorov, Synthesis and stabilization of complex behaviors through online trajectory optimization, Proc. IEEE/RSJ Intl

Conf. on Intelligent Robots and Systems (IROS) (2012) 4906–4913.
[47] M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, D. G. Caldwell, An approach for imitation learning on Riemannian manifolds, IEEE

Robotics and Automation Letters (RA-L) 2 (3) (2017) 1240–1247.
[48] S. Arimoto, M. Yoshida, M. Sekimoto, K. Tahara, A riemannian-geometry approach for modeling and control of dynamics of object manip-

ulation under constraints, Journal of Robotics 2009.
[49] A. Biess, T. Flash, D. G. Liebermann, Riemannian geometric approach to human arm dynamics, movement optimization, and invariance,

Physical Review E 83 (3) (2011) 031927.
[50] P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2007.
[51] X. Pennec, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements, Journal of Mathematical Imaging and

Vision 25 (1) (2006) 127–154.
[52] E. Simo-Serra, C. Torras, F. Moreno-Noguer, 3D human pose tracking priors using geodesic mixture models, International Journal of Com-

puter Vision 122 (2) (2017) 388–408.
[53] S. M. Khansari-Zadeh, A. Billard, Learning stable nonlinear dynamical systems with gaussian mixture models, IEEE Transactions on

Robotics 27 (5) (2011) 943–957. doi:10.1109/TRO.2011.2159412.
[54] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical movement primitives: Learning attractor models formotor behaviors,

Neural Computation 25 (2) (2013) 328–373.
[55] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, M. Marı́n-Jiménez, Automatic generation and detection of highly reliable fiducial

markers under occlusion, Pattern Recognition 47 (6) (2014) 2280–2292.
[56] S. S. Restrepo, G. Raiola, P. Chevalier, X. Lamy, D. Sidobre, Iterative virtual guides programming for human-robot comanipulation, in: 2017

IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2017, pp. 219–226.

Appendix A. (iterative) Linear Quadratic Regulator ((i)LQR) method

We can describe all states x as a linear function of the initial state x1 and the applied control commands u as

x = Sxx1 + Suu, (A.1)

where

Sx =

I
A
A2

...
AT−1

,Su =

0 0 · · · 0
B 0 · · · 0

AB B · · · 0
...

...
. . .

...
AT−2B AT−3B · · · B

(A.2)

The cost function can also be modified as
c(x,u) = x>Qx + u>Ru, (A.3)

where Q = blockdiag (Q1,Q2, · · · ,QT) and R = blockdiag (R1, R2, · · · , RT−1). Substituting (A.1) and (A.2) to (A.3),
we obtain

c(x,u) = u>(S>uQSu + R)u + 2u>S>uQSxx1 + x>1S>xQSxx1. (A.4)

23

http://dx.doi.org/10.1109/TRO.2011.2139130
http://arxiv.org/abs/2208.00596 [cs]
http://arxiv.org/abs/2208.00596 [cs]
http://dx.doi.org/10.1007/s11370-015-0187-9
http://dx.doi.org/10.1007/s11370-015-0187-9
http://dx.doi.org/10.1109/MRA.2020.2980548
http://dx.doi.org/10.1109/TRO.2011.2159412

The optimal control command u is computed by differentiating (A.4) with respect to u and equating to zero,
providing the batch form solution

u = −
(
S>uQSu + R

)−1S>uQSxx1. (A.5)

For non-quadratic costs and/or non-linear dynamics, the problem can be solved iteratively by starting from an
initial estimate and by computing a Taylor expansion of the cost and dynamics xt+1 = f (xt,ut) around the point
(x̂t, ût), namely

xt+1 ≈ f (x̂t, ût) +
∂ f
∂xt

(xt − x̂t) +
∂ f
∂ut

(ut − ût) ⇐⇒ ∆xt+1 ≈ At∆xt + Bt∆ut,

with error terms {∆xt = xt− x̂t,∆ut =ut−ût}, and Jacobian matrices {At =
∂ f
∂xt
, Bt =

∂ f
∂ut
}.

The cost function can also be quadratized as

c(xt,ut) ≈ c(x̂t, ût) + ∆x>t
∂c
∂xt

+ ∆u>t
∂c
∂ut

+
1
2

∆x>t
∂2c
∂x2

t
∆xt + ∆x>t

∂2c
∂xtut

∆ut +
1
2

∆u>t
∂2c
∂u2

t
∆ut. (A.6)

The resulting approach is called iLQR [37, 38], where an LQR problem is solved in each optimization step. with
gradients { ∂c

∂xt
, ∂c
∂ut
}, and Hessian matrices { ∂

2c
∂x2

t
, ∂2c
∂xtut

, ∂
2c
∂u2

t
}. It means that at each iteration, we should update û with

∆u =
(
S>uHxSu + 2S>uHxu + Hu

)−1 (
−S>u gx − gu

)
, (A.7)

and repeat this step until the system converges to a local optimum.

Appendix B. Detail of the experiment setting

Appendix B.1. Demonstation Sampling
In the simulation part, we simplify the process by generating the demonstration manually to validate our approach.

In the planar grasping task, the demonstration consists of the key points representing each motion stage marked by
different colors in Fig. 6(a). We generate the motion from different directions, and in each motion, we attempt to
simulate human grasping habits by adding random noise to the orientation, based on the pose of orienting toward
the target, with the amplitude of the noise decreasing as it approaches the object. In the planar box-opening task,
we generated one demonstration, which is enough to include the manipulation feature. We add a short pause at the
beginning and at the end of the motion to clearly distinguish each stage of the task (preparing stage, opening stage and
finishing stage). In the Fig. 8(a), we can observe that the green points and blue data points gather together, respectively,
which means there is a stop at two stages. These red points widely spread reflecting the process of opening motion.

In the real experiment part, for the grasping task, we use the kinesthetic teaching method to demonstrate a robot
grasping each object six times. The grasping direction for the chips can, baseball and bowl is distributed along
the geometric shape, and the human’s grasping habit decides the grasping point’s height. For the prismatic objects,
the grasping point is along the height of the object. For the box-opening task, we attached Aruco markers to the
demonstrator’s hand to record the hand motion six times, where the starting point of the opening movements was
distributed evenly along the edge of the box.

Appendix B.2. Demonstation Learning and Generalization
Due to the manually designed demonstration, we already have data points for each stage in the simulation. So,

we construct the Gaussian distribution of each stage using one Gaussian. We take the mean of each stage as the
stepwise reference and the precision matrix of each stage as the weight Q in the cost function. The value of R is
set manually. We use the method in Sec. 4.3 to change from time-driven to phase-driven. In the open-loop control
case, the dynamics system is at the level of the robot kinematic, where we take the joint velocity as the state. In the
feedback control, the state is defined on the end-effector pose expressed on the selected manifold and we use Cartesian
impedance control to track the planned trajectory.

In the real experiment, we first use a GMM with four components to segment the demonstrations considering the
spatial-temporal information into four stages (the experimenter defines the number of components). Then, we got the
demonstration points for each stage of the motion used to construct their Gaussian. We use the same control protocol
on the real robot.

24

	Introduction
	Related Work
	Application of Geometry Information
	Representation of Geometry
	Shared Control
	Optimal Control

	Background
	(iterative) Linear Quadratic Regulator control ((i)LQR)
	Riemannian manifold
	Gaussian Distribution on a Riemannian manifold

	Proposed Method
	Manifold selection
	OCP in different types of coordinate systems
	Phase Estimation

	Experiments
	LQR reaching task in different coordinate systems
	Grasping simulation
	Box-opening simulation
	Autonomous grasping with the Franka Emika robot
	Autonomous box opening with the Franka Emika robot
	User-guided objects grasping with the Franka Emika robot

	Discussion
	Conclusion
	(iterative) Linear Quadratic Regulator ((i)LQR) method
	Detail of the experiment setting
	Demonstation Sampling
	Demonstation Learning and Generalization

