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An Optimal Control Formulation of Tool
Affordance Applied to Impact Tasks

Boyang Ti, Yongsheng Gao, Jie Zhao, Sylvain Calinon

Abstract—Humans use tools to complete impact-aware tasks
such as hammering a nail or playing tennis. The postures adopted
to use these tools can significantly influence the performance of
these tasks, where the force or velocity of the hand holding a tool
plays a crucial role. The underlying motion planning challenge
consists of grabbing the tool in preparation for the use of this
tool with an optimal body posture. Directional manipulability de-
scribes the dexterity of force and velocity in a joint configuration
along a specific direction. In order to take directional manipu-
lability and tool affordances into account, we apply an optimal
control method combining iterative linear quadratic regulator
(iLQR) with the alternating direction method of multipliers
(ADMM). Our approach considers the notion of tool affordances
to solve motion planning problems, by introducing a cost based
on directional velocity manipulability. The proposed approach is
applied to impact tasks in simulation and on a real 7-axis robot,
specifically in a nail-hammering task with the assistance of a
pilot hole. Our comparison study demonstrates the importance
of maximizing directional manipulability in impact-aware tasks.

Index Terms—Directional manipulability maximization,
impact-aware motion, constrained motion planning, optimal
control, iterative linear quadratic regulator (iLQR), alternating
direction method of multipliers (ADMM).

I. INTRODUCTION

EFFICIENT manipulation requires choosing a comfortable
posture to execute an action, so that it is easy to generate

a force or a velocity according to the tool affordances. The
intrinsic of the above phenomenon is that the central nervous
system (CNS) will transform information about the initial
human posture and the task requirement into an appropriate
pattern of muscular activity, where the target position is first
transformed into a desired arm posture, which is then used to
compute the motor commands [1]–[3].

The prevalent research in robot motion planning focuses on
imitating the human hand motion, such as some typical point-
to-point (pick-and-place) or trajectory following tasks (writ-
ing/wiping/polishing). However, as trajectories extend into a
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larger spatial area and/or task complexity increases, factors
other than kinematics and biomechanics become increasingly
relevant [4]. This demonstrates that arm morphology and
its other intrinsic properties, such as dynamics, inertia, and
muscle viscoelasticity, influence trajectory planning together
with the environment geometry. Manipulability ellipsoid [5]–
[7] is taken as a geometric descriptor to measure and visualize
the capability of a manipulator in a given configuration by
considering the kinematic and dynamic information of the
system. The manipulability projections along different direc-
tions provide insights regarding the directions along which the
manipulator has higher or lower dexterity. A higher projection
value means that a greater displacement of the end-effector
can be produced in this direction, for the given joint angle
configuration. Jaquier et al. [8] proposed a manipulability
ellipsoid tracking method and validated it in a peg-in-hole
task, where two kinds of desired manipulability are aligned
referring to the central axis of the ellipsoids. In this article,
we use directional manipulability [9] as a metric of desired
manipulability, which can be flexibly transferred to a broader
range of scenarios.

The concept of object/tool affordance originates from the
field of psychology [10], whose definition has been extended
to describe the relationship between the properties of an object
and the capabilities of an agent that determine how the object
could possibly be used [11]. By extension, tool affordance
refers to the qualities or characteristics of a tool that suggest
the potential actions that can be performed with the tool. In
this article, the notion of tool affordance will refer to the
set of possible actions that could be generated according to
the manner in which the tool is handled by the robot. It
extends the function of the end-effector to enable the robot
to expand its range of applications using tools, where the
way in which the tool is grasped will determine in which
manner the new end-effector can be used (e.g., using the tip
of the hammer as the prolongation of the robot kinematic
chain). Humans have the ability to generate skilled movements
by exploiting tool affordances according to the demands of
different tasks. It has been suggested that the body schema
is plastic because it can incorporate external objects [12]. A
hand-held tool, for example, may become so familiar to the
user that it feels like a natural extension of the hand [13].
The assistance of external tools has dramatically increased the
possibility of achieving more intractable tasks. Finding ways
to manipulate the tools before reaching the final target pose
is crucial. Therefore, uniting these two phases to complete
motion planning is essential to transfer such skills to robots.

Fang et al. [14] solved a tool-based manipulation as a two-
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stage problem consisting of a grasping phase and a manip-
ulation phase, where the optimized task success is achieved
by jointly training two networks. The dataset used in their
network covers diverse shapes of hammers, allowing it to
be generalized to many cases. However, there is still a gap
between these two separate phases. Namely, how to transition
between them naturally. In this article, we solve the motion
planning problem by including the two phases, which allows
the robot to anticipate in which manner the tool should
be seized by the robot to be further used in an efficient
way. Solving the optimization problem in such a way allows
the viapoint separating the two phases and their transitions
to be carefully chosen. In contrast, solving the problem in
each phase separately would not provide the tool affordance
capability of our approach. The tool affordance range loosely
refers to the desired range for the grasping of the tool that
will determine how it can further be used in the hitting
motion, which is specified as a viapoint constraint. The term
viapoint refers here to a key position that the robot needs
to pass through during the movement. An optimal control
problem (OCP) can be solved to generate optimal grasping
and manipulation movements by balancing the weights of
multiple cost terms, mimicking the human handling of the
tool in different postures to facilitate the task according to the
requirements. We use directional manipulability to describe the
capability of using a tool. The maximization of the directional
manipulability is taken as a part of the cost function to influ-
ence the tool grasping pose. To offer more choices to handle
the tool, we represent the viapoint as a desired range treated as
a spatial constraint, which allows the manipulator to choose
any gripping point within the range while considering tool
affordance. The tool handle gesture is adaptively optimized
according to the demand of the subsequent manipulation task
to be achieved.

An optimal control problem formulation can be used to
solve this tool-use planning challenge. The iterative linear
quadratic regulator (iLQR) [15], [16] is of particular interest
to our work, as it can typically be used to search for a
solution in the joint angle configuration space of the robot. To
consider the inequality constraints that occur in the task space
introduced by the tool affordance, there are several solvers
available for solving constrained optimization problems, such
as sparse nonlinear optimizer (SNOPT) [17], sequential least
squares programming (SLSQP) [18] and nterior point opti-
mizer (IPOPT) [19]. The optimization problems in the field
of robotics manipulation can be solved efficiently by the
above solution methods. The alternating direction method of
multipliers (ADMM) [20] is another popular optimization
technique for solving problems that can be decomposed into
subproblems with different variables. In this article, inspired
by Sindhwani et al. work [21] on car parking and obstacle
avoidance, we embed ADMM into iLQR to solve a constrained
motion planning problem and demonstrate its effectiveness in
serial manipulator systems through point-to-range and pick-
and-place tasks. The ADMM-iLQR approach that we use is
similar to the method proposed in [22], except that we employ
an approximation for the optimization function to make it
approximately equal to the convex problem in the first ADMM

iteration. In [22], the control case of iLQR is considered,
which can be solved by dynamic programming. In our work,
the planning case is instead considered, where the solution can
be obtained analytically through the batch solution of iLQR,
which can efficiently computed in matrix form by only relying
on linear algebra. Note that in both control and planning
cases, the underlying iterative approach is not guaranteed to
lead to a global optimum. However, the local optimal solution
that it finds remains an appropriate estimate in a wide range
of problems in robotics, including redundant problems with
sparse costs in the forms of viapoints as the one that we target
in this article.

From the perspective of biomechanics, we can observe the
characteristics of human behaviors in impact-aware tasks with
tool assistance. For example, as shown in Fig. 1, when we
select a grasp to seize an object, we consider the relationship
among body configuration, tool, and target poses. When we
use a claw hammer to pull out a nail driven into a wooden
board, we typically prefer to hold the arm in a tucked-in
configuration, making it easier to generate substantial static
forces between the nail and the claw. In contrast, when
we want to drive a nail into a board in a more stretched
configuration, we can easily drive the arm to a higher speed
and transfer it to the hammer, as a way to generate maximum
momentum (provided that the inertia of the hammer remains
constant). In addition to high speeds, the inertial and stiffness
properties of the arm configuration play a critical role in such
impact-aware tasks, where we need our muscles to absorb
the vibrations while controlling the tool’s stability during the
impact. In the setup that we will consider, instead of absorbing
vibrations solely through the properties of the arm, a pilot hole
is additionally used to prevent deviations arising from uneven
resistance distribution at the tip of the nail. This external
assistance guarantees a smooth execution of the hammering
task, which is also widely applied in our daily lives.

The contributions of this article can be summarized as
follows:

(1) We employ an ADMM-iLQR strategy to solve an
optimal control problem (OCP) considering tool affordance
constraints in impact-aware tasks;

(2) We introduce a maximum directional manipulability cost
in the optimal control framework to optimize the grasping and
final manipulation posture;

(3) We make a comprehensive comparison of different
approaches to measuring manipulability in directional tasks;

To fully illustrate the significance of these contributions, we
provide simulations to validate our approach and demonstrate
its application in an impact-aware task (hammering).

Compared to the existing constrained OCP, the use of
ADMM solver in our work is employed to include a tool
affordance aspect, specified as a range that can be used during
robot manipulation. We show that this convex constraint can be
used to enlarge the manipulation capability of the robot. The
inequality constraint problem is often studied in the context
of obstacle avoidance or joint physical constraint avoidance.
We show here that it can also be used as a simple model of
tool affordance described as a constraint in OCP.
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Fig. 1. Left: The ways in which tools are seized and used vary according to the characteristics of the task (tool affordances). For hammering a nail, we
grasp the hammer in a way that is efficient for the task demands, since the greater the velocity, the deeper the nail can be driven. For nail-pulling, the same
hammer is grasped in a different way. Here, the greater the static force applied to the nail, the easier the nail can be pulled out. Right: In a peg-in-hole task,
we typically choose a comfortable pose to insert a peg into a narrow hole, which depends on the relations between the hand, the peg and the hole (with
maximum force manipulability along the insertion direction).

The rest of the paper is organized as follows. In Section
II, we summarize the related works on impact-aware ham-
mering and tool-use tasks, constrained optimal control and
manipulability. In Section III, we introduce the background
knowledge related to our method. In Section IV, we introduce
our proposed method by deriving the control policy with
constraints and analyze the directional manipulability and
other soft constraints considered in the cost. In Section V
and VI, we compare our approach with methods in which
the manipulability is not taken into account, methods using
manipulability determinant metrics [6], and method minimiz-
ing manipulability distances [8]. In Section VII and VIII, we
discuss current limitations and future work.

II. RELATED WORK

A. Impact-Aware Hammering Task and Tool-Use Task

Hammering is a typical impact-aware task, common in daily
life, industry, and even in the medical field. The general
performance index of hammering is the speed of the hammer
head in contact with the object or landmark of interest [23].
Research on hammering has been validated with single joint
[24], [25], serial manipulators [26] and humanoid robots [27],
[28]. Tsujita et al. [27] presented a model of contact dynamic
and proposed an evaluation of the impulsive force prediction
model. Imran et al. [29] focused on minimizing the impulses
on robot joints to increase their lifespan. Jujjavarapu et al.
[25] demonstrated the usability of optimization for exploiting
the dynamics of a variable stiffness mechanism (VSM) in
hammering tasks to improve task performance with time-
varying stiffness profiles. The aspect of vibration absorbing
or post-impact system stability has been well investigated in
past decades. Fang et al. [14] and Tanev et al. [30] developed
a model that learns policies for task-oriented grasping and
task-related tool manipulation with self-supervision. Training
neural networks takes time, requires large datasets, and pro-
duces results that lack interpretability. It also rarely takes
into account the known biomechanical aspects. In our work,
we consider the pose configuration for the pre-hammering

state, which is achieved by using an optimal control method.
This allows the manipulator to limit the control commands
while generating important hammering speed in the desired
configuration.

A few works have used a learning from demonstration
strategy to achieve tool-based manipulation skills learning.
Li et al. [31] proposed a hierarchical architecture to embed
the use of tools in a learning from demonstration framework.
Rajeswaran et al. [32] incorporated human demonstrations in
deep reinforcement learning to provide robust manipulation
strategies. In addition to offline learning, Jain et al. [33]
proposed an online and incremental approach to make the
robot acquire manipulation capabilities by interaction with the
human user. Involving humans in the learning process is a very
efficient way to exploit the redundancy of robot arms, but it
can be challenging to imitate human manipulation postures
just through kinesthetic or visual demonstrations, especially
when the demonstrated skill requires to be close to the robot
limits. Kunz et al. [34] presented an rapidly exploring random
tree (RRT) motion planner that considers joint acceleration
limits and potentially nonzero start and goal velocities in
hammering tasks. Holladay et al. [35] formulated kinematic
and force limits as decision variables with various constraints.
In this article, we discuss the influence of the impact-aware
task requirements on the tool grasping posture and consider
this influence in an optimal control formulation of motion
planning.

B. Constrained Optimal Control
For real-world application scenarios, different constraints

should be considered in the optimization problem, such as dy-
namic constraints, task constraints (incl. obstacle avoidance),
and physical limit constraints (incl. robot joint position and
velocity limits). Control-limited differential dynamic program-
ming [36] can be used to handle box inequality constraints at
the control level. Chen et al. [37] proposed a constrained iLQR
approach that transforms the constraints to a cost function by
adding a barrier function, which can also be extended to a
logarithmic barrier [38].
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Nowadays, the development of numerical optimization has
made unprecedented progress. ADMM has been proposed
to solve optimal control problems by showcasing excellent
efficiency and stability. It has been used in diverse areas such
as autonomous driving [22], electricity networks [39] or wind
farms [40]. It can handle problems with multiple constraints
and it can be more efficient than the distributed gradient
method [41], especially in problems in which the objective
function can be separated into two or more subproblems that
can be solved independently. Hong et al. [42] established
the global (linear) convergence of the ADMM method for
a class of convex objective functions involving any number
of blocks. In some special conditions (strong convexity and
Lipschitz differentiable), variants of ADMM can ensure linear
convergence. Benefiting from the subproblems split strategy,
the ADMM algorithm can relieve the computation burden
caused by increasing the system dimensions. Also, ADMM
is typically less dependent on parameter settings than many
other distributed methods and, therefore, is easy to implement.
Overall, ADMM can often offer performance comparable to
specialized algorithms, and in most cases, the simple ADMM
algorithm will be efficient enough to be useful in many
robotics problems [20], see Yang et al. [43] for a compre-
hensive survey on the fundamental property and optimization
options in ADMM. In robot manipulation tasks, it has also
been used in contact-rich optimization problems. Aydinoglu et
al. [44], [45] proposed using ADMM to exploit its distribution
to solve multi-contact dynamics and complicated contact-rich
manipulation tasks. Shirai et al. [46] proposed a distributed
optimization framework based on ADMM to solve contact
dynamics. Shorinwa et al. [47] used the ADMM method
to solve a contact-implicit trajectory optimization problem
in a multi-agent system. Wijayarathne et al. [48] employed
ADMM to generate real-time optimal control in soft contact
problems. The above collection of work focused on contact-
rich optimization problems. Our work exploits the power of
distributed fast solvers to handle constrained optimization
problems encapsulating manipulability and tool affordance
information, that we exploit in impact-aware tasks. This
problem is critical for ensuring tool affordance constraints
and optimizing the manipulation configuration of the robotic
manipulator to produce optimal impact actions.

C. Manipulability Ellipsoids

Velocity and force manipulability ellipsoids are two descrip-
tors used to measure the ability of an end-effector to perform
velocity or force along all task-space directions for a given
joint angle configuration. A typical metric based on these
descriptors consists of keeping only the volume of the ellipsoid
as the source of information [6]. Marić et al. [49] used a Rie-
mannian metric to provide a measure of proximity to singular
configurations. A thorough study of manipulability ellipsoid
on learning, tracking, and transfer has been conducted by
Jaquier et al. [8], [50], [51], where a control formulation was
developed to track desired manipulability ellipsoids, which
can be extended to nullspace control to also reach a target
pose as primary goal. Here, we use the ADMM-iLQR method

to extend the approach to viapoint tasks characterized by a
desired range to reach, which is used to pick and manipulate
a hammer, by letting the robot exploits the tool affordances to
determine optimal picking locations by anticipating the next
part of the task that consists of hammering a nail.

In this article, we propose to exploit directional manip-
ulability in the cost function, defined as the length of the
manipulability ellipsoid along a particular direction of interest.
Tugal et al. [52] implement directional manipulability to
extend the interaction capabilities of a mobile manipulator
on the valve turning task. Kim et al. [53] evaluated the
maximum directional kinematic capability using optimization-
based methods for redundant manipulators. Besides improving
the velocity and force, Marais et al. [54] exploited this measure
to maximize the dynamic manipulability to reject directional
disturbances. For the hammering task, the direction of interest
corresponds to the orientation of the nail perpendicular to the
board. We incorporate this into the cost function to account
for its effect on the grasping posture.

III. PRELIMINARIES

A. Alternating Direction Method of Multipliers (ADMM)

Alternating Direction Method of Multipliers (ADMM) is
an algorithm designed to combine the decomposability of dual
ascent methods with the superior convergence properties of the
method of multipliers [20]. The algorithm solves problems in
the form

min
x,z

c(x) + g(z)

s.t. Ax+Bz = d,
(1)

with variable x ∈ Rn and z ∈ Rm, where A ∈ Rp×n,B ∈
Rp×m and d ∈ Rp. c(·) and g(·) are assumed to be convex.
The difference from the general linear equality-constrained
problem is that the variable has been split into two parts, called
x and z here, with the objective function separable across this
splitting. The augmented Lagrangian function of this is

Lρ(x, z,y) = c(x) + g(z) + y⊤(Ax+Bz − d)

+(ρ/2) ∥Ax+Bz − d∥22 ,
(2)

where ρ > 0 is a penalty parameter and y is the dual variable.
The formulation can be described compactly by combining the
linear and quadratic terms in the augmented Lagrangian and
scaling the dual variable. The scaled dual variable is defined
as λ = (1/ρ)y. Then, by following [20], the iteration process
of ADMM becomes

xk+1 = argmin
x

(
c(x) +

ρ

2

∥∥Ax+Bzk − d+ λk
∥∥2
2

)
,

zk+1 = argmin
z

(
g(z) +

ρ

2

∥∥Axk+1 +Bz − d+ λk
∥∥2
2

)
,

λk+1 = λk +Axk+1 +Bzk+1 − d. (3)

The convergence condition of ADMM solver is divided into:

- Residual convergence: Axk+1 +Bzk+1 − d→ 0
- Objective convergence: c(xk+1) + g(zk+1) approaches

the optimal value
- Scaled dual variable convergence: λ → λ∗ , where λ∗

is a dual optimal variable
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Consider the following generic constrained convex opti-
mization problem over the variable x

min
x

c(x)

s.t. x ∈ C,
(4)

where c(·) and C are convex. This problem can be written in
an ADMM consensus formulation as

min
x

c(x) + g(z)

s.t. x− z = 0,
(5)

where g is the indicator function of C, i.e., g(z) = 0 for z ∈ C
and g(z) = +∞ otherwise, and z is related to the constraint
C. The augmented Lagrangian becomes

Lρ(x, z,λ) = c(x) + g(z) + (ρ/2) ∥x− z + λ∥22 . (6)

Therefore, the scaled form of ADMM for this problem is

xk+1 = argmin
x

(
c(x) + ρ

∥∥x− zk + λk
∥∥2
2

)
,

zk+1 = ΠC
(
xk+1 + λk

)
,

λk+1 = λk + xk+1 − zk+1.

(7)

The x update involves minimizing c(·) plus a convex
quadratic function. The z update is the Euclidean projection
onto C. In the Appendix, we show that in the case of affine
constraints, the projection step corresponds to the projection
onto the sublevel set of a convex function.

B. Manipulability Ellipsoids

The velocity and force manipulability ellipsoids are two
mutually complementary metrics, that can be obtained by an
inverse transformation of the other. Here, we consider velocity
manipulability, which describes the volume that can be reached
by the end-effector in Cartesian space for a single bounded
command in joint space. It will typically describe how the
robot will be able to face perturbations at a given time step,
which is an important descriptor for kinematically redundant
robots as it describes how the selected robot posture can
influence the movement of the end-effector in all directions
of the task space.

The velocity manipulability of a robot can be found by using
the kinematic relationship between task velocity ẋ and joint
velocity q̇

ẋ = J(q)q̇, (8)

where q ∈ Rn and J ∈ R6×n are the joint position
and Jacobian of the forward kinematics function describing
the robot, respectively. The derivation of the manipulability
ellipsoid typically starts by taking the joint velocity limited in
a unit sphere by

∥q̇∥ = 1, (9)

therefore we can obtain

q̇⊤q̇ = ẋ⊤(JJ⊤)−1ẋ = 1, (10)

by using the least-squares inverse kinematics relation q̇ =
J†ẋ = J⊤(JJ⊤)−1ẋ. We can observe that under this

constraint, the matrix JJ⊤ determines the scalability of the
velocity manipulability described by

M(q) = JJ⊤. (11)

The eigenvector with the maximum eigenvalue of the matrix
represents the direction with the greatest velocity that the robot
can generate based on its current joint angle configuration
and in the limit of joint velocity contained in the unit sphere.
A force manipulability can be defined similarly by replacing
velocity commands with torque commands.

The above definition of manipulability ignores the phys-
ical property of the robot, which can consist of constraints
on the commands, or in the form of preferences to set
the contribution of each actuator in the kinematic chain.
In [50], a diagonal matrix W = diag(q̇1,max, · · · , q̇n,max)
is considered, whose elements correspond to the maximum
joint velocities of the robot. Here, we normalize the max-
imum velocity of each joint to consider this weight using
W = diag(q̇1,max, · · · , q̇n,max)/max(q̇1,max, · · · , q̇n,max).
Therefore, Eq. (11) becomes

M̃(q) = JWW⊤J⊤, (12)

which can describe the flexibility of the manipulator in task
space by considering its joint angle velocity limits, see [50]
for details.

There are a variety of indicators to measure manipulability,
in which the manipulability index is the most commonly used,
expressed as

m =
√

det(JJ⊤), (13)

which is proportional to the volume of the manipulability
ellipsoid. The orientation of the main axis of the ellipsoid
depends on the joint angle configuration of the robot. In order
to design it according to the required orientation in the task
space, transmission ratios [9] has first been proposed to mea-
sure directional manipulability as a manipulability measure
along a specific direction by projecting the ellipsoid onto the
direction vector, defined as

α =
√
u⊤(JJ⊤)u, (14)

where u represents the direction of interest. α corresponds to
the distance along the vector u from the origin to the surface
of the ellipsoid.

C. Impact aware analysis of the hammering task
Hammering a nail is a typical example of impact-aware

tasks, corresponding to a momentum or energy transfer prob-
lem. The difference between humans hammering a nail with
and without a tool lies in the dynamic model of the task.
Without a tool, the momentum transfer occurs between the
human and the nail, while when using a tool, it occurs between
the tool and the nail. The dynamic model with the tool does not
include the human because of the soft connection between the
human and the tool. The role of the human is here to stabilize
the tool while absorbing the vibration generated at the moment
of impact.

We selected a plastic foam material for the hammering
task. The material is tight and soft, making it easy to break
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Fig. 2. Illustration of a nail driven into a plastic foam. (a) shows the situation
without a preformed insertion shape (pilot hole), where sideslip problems can
occur; (b) shows the typical situation with a pilot hole, where the nail can be
driven more easily so that it remains straight.

through. However, the interior of the foam is composed of
spherical particles, making the internal material distribution
non-uniform, resulting in possible sideslip deviation during the
nailing process, as shown in Fig. 2(a). When considering ma-
terials such as wood, concrete, or plastic, pilot holes (smaller
than the nails) can be used as a way to drive screws (e.g., for
furniture assembly). Despite the presence of a pilot hole, the
resistance gradually increases during the insertion process due
to the compactness and elasticity of the material, as shown in
Fig. 2(b), where the blue arrow represents the pressure.

According to the above analysis, the impulse model of
hammering with a tool is constructed between the hammer
and a nail. With the impulse-momentum theorem [55], the
impulse during the hammering task is defined as∫ t

0

F (t)dt = mvh(t)−mvh(0), (15)

where F (t) represents the varying impulsive force along the
nail orientation with the duration of the collision t. vh(0)
and vh(t) represent the velocity along the driving direction of
the hammer head before and after the collision. The impulse-
momentum theorem states that the impulse applied to an object
will equate to the change in its momentum. With the help
of the pilot hole, we can neglect other additional momentum
losses such as rotational kinetic energy, plastic deformation,
and heat. Even though these losses are still present, the pres-
ence of the pilot hole greatly reduces their effects. In addition,
as the depth of the nail into the board gradually increases,
the force due to the squeezed foam increases, which creates
resistance during insertion. Based on the above assumption,
in the nail hammering task, we assume vh(t) = 0. Therefore,
for a given hammer mass, the velocity before the collision is
the key factor to generate a powerful hammering motion.

IV. PROBLEM FORMULATION

A. ADMM for Constrained iLQR

This section uses ADMM optimization to solve an OCP by
considering inequality constraints with non-linear dynamical

systems and non-quadratic cost functions through an iLQR
method. We separated the problem into two parts:

1) non-convex problem without inequality constraints;
2) an analytical projection step resulting into a fast solver.
The constrained problem is defined as

min
xt,ut

∑T
t=0 ct(xt) + ∥ut∥2Rt

s.t. xt+1 = f(xt,ut),
Cx : ax ≤ l(xt) ≤ bx,
Cu : au ≤ h(ut) ≤ bu,

(16)

where c(x) is a non-quadratic function of the state and
represents the general formulation of the cost related to the
hammering task. We introduce the components of the state
cost function in Section IV-E (see complete cost function in
Eq. (30)). c(x,u) =

∑T
t=0 ct(xt) + ∥ut∥2Rt

corresponds to
the term c(x) in Eq. (4), where the variable x in c(x) covers
the system state x and control u in our problem. f(·) is
a nonlinear function on the state and control variables. We
consider the tool affordance as a convex constraint in the
task space. For example, the tool affordance of a hammer
can be approximated to the prismatic range of the handle that
can be grasped in the task space. The state xt is composed
of the joint position of manipulator qt and its end-effector
position pt = f kin(qt), where f kin(·) represents the forward
kinematics of the manipulator. Here, we use velocity control,
so the control command ut consists of the joint angle velocity
q̇t. Thus, with this combination of state and control variables,
the system is nonlinear. We also added control boundaries
for joint velocity limits according to the robot used in the
experiment. l(·) and h(·) represent the general form of the
function between the system state and the task state where the
constraint occurs, in our case l(xt) = pt and h(ut) = ut. We
define Cx and Cu as the inequality constraint on the state and
control variables, respectively.

1) Step 1 of ADMM: To solve the above optimization,
we can separate the inequality constraints from the problem
according to Eq. (6) and solve a regularized version of the
problem in Eq. (16) without inequality constraints as

min
xt,ut

∑T
t=0 ct(xt) + ∥ut∥2Rt

+ ρx

2 ∥xt − zx,t + λx,t∥2

+ρu

2 ∥ut − zu,t + λu,t∥2
s.t. xt+1 = f(xt,ut),

(17)
where the update of zx/u is the Euclidean projection onto the
state and control boundary and λx/u is the scaled dual variable
as in Eq. (3).

The constraints for the state of the end-effector position
can be defined to occur at any timestep, which in this article
corresponds to the timestep of picking up the tool. Therefore,
the projection on the state inequality constraint Cx is active
when the pick-up action occurs. In addition, the projection
of the control inequality constraint Cu is valid throughout
the motion. We simplify the above formula by adding the
following abbreviation to provide compact expressions. Qr,t

and Rr,t are penalty parameters in the form of diagonal
matrices for the state xt and control command ut. We define
xr,t = zx,t − λx,t,ur,t = zu,t − λu,t. Then, we get the
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following expression

min
xt,ut

∑T
t=0 ct(xt) + ∥ut∥2Rt

+ ∥xt − xr,t∥2Qr,t

+∥ut − ur,t∥2Rr,t

s.t. xt+1 = f(xt,ut).

(18)

We perform a first-order Taylor expansion of the dynamical
system xt+1 = f(xt,ut) around some nominal realization of
the plant denoted as (x̂t, ût), namely

xt+1 ≈ f(x̂t, ût) +
∂f

∂xt
(xt − x̂t) +

∂f

∂ut
(ut − ût)

⇐⇒ ∆xt+1 ≈ At∆xt +Bt∆ut, (19)

with ∆xt = xt − x̂t,∆ut = ut − ût, and Jacobian matrices
At = ∂f

∂xt

∣∣
x̂t,ût

, Bt = ∂f
∂ut

∣∣
x̂t,ût

. The concatenated form
of the linearized dynamics model can be written as ∆x =
Sx∆x1+Su∆u. Since in our problem, we start from ∆x1 =
0, therefore, ∆x = Su∆u, see Appendix for details. We then
approximate c(xt) by a second-order Taylor expansion around
x̂t, namely

ct (xt) ≈ ct (x̂t) + kx
t

⊤ (xt − x̂t)

+
1

2
(xt − x̂t)

⊤
Kxx

t (xt − x̂t)

≈ 1

2
(∆xt − µt)

⊤
Kxx

t (∆xt − µt) + const.,

(20)

where kx
t = ∇xt

ct(xt) and Kxx
t = ∇2

xt
ct(xt) are the

Jacobian and the Hessian matrices, and µt = −Kxx
t

−1kx
t .

With the above approximation, the cost of the state c(x)
can be changed from a non-convex to a convex form. Then,
the cost c(x) embedding the control part can be rewritten
in batch form by removing the constant terms as c(x,u) =
1
2∥∆x− xd∥2Kxx

t
+ ∥∆u− ud∥2R, with ud = −û. We define

∆xr = −(x̂ − xr), ∆ur = −(û − ur), where variables
without indices t denote the concatenation of the variables for
the whole task duration. One iteration of iLQR consists of the
following problem:

min
∆x,∆u

1
2∥∆x− xd∥2Kxx + ∥∆u− ud∥2R

+∥∆x−∆xr∥2Qr
+ ∥∆u−∆ur∥2Rr

s.t. ∆x = Su∆u.

(21)

For such class of problems, the solution can be obtained
analytically. This problem follows a similar LQR formulation
as Eq. (36) in the Appendix. We focus here on the batch least-
squares solution of LQR. Its analytic solution is given by

∆û =
(
S⊤
u

(
1
2K

xx +Qr

)
Su +R+Rr

)−1

( 12S
⊤
uK

xxxd + S⊤
uQr∆xr +Rr∆ur).

(22)

Although the problem in this paper is solved using an ap-
proximation into a convex problem, the optimization problem
for the original problem is still non-convex. Therefore, with
the help of the ADMM algorithm in solving such non-convex
problems, it does not need to give a feasible solution.

Denoting the solution to Eq. (21) at iteration kj as ∆ûkj

and given the current nominal state and control
{
x̂ki

kj
, ûki

kj

}
,

we perform a line search as in Algorithm 2 to determine
the next nominal state and control command

{
x̂ki

kj+1, û
ki

kj+1

}

Algorithm 1: ADMM with constrained iLQR
Input: Set Qr,Rr, kmax, primal and dual residual

thresholds rp,max, rd,max, cmax;
Initialize

k = 0, z0
x = 0,λ0

x = 0, z0
u = 0,λ0

u = 0 and
r0p ≥ rp,max, r

0
d ≥ rd,max

Initialize the nominal state x̂0 and control û0

Output: optimal x∗,u∗

while ki < kADMM
max and rkp > rp,max and rkd > rd,max do

while kj < kiLQR
max and c(x̂ki

kj
, ûki

kj
) > cmax do

Solve Eq. (21) for ∆uki+1,∆xki+1 with
xki
r = zki

x − λki
x and uki

r = zki
u − λki

u ;
Do line search to find ûki+1

kj
and x̂ki+1

kj
;

end
zki+1
x = ΠCx

(x̂ki+1 + λki
x );

zki+1
u = ΠCu

(ûki+1 + λki
u );

λki+1
x = λki

x + x̂ki+1 − zki+1
x ;

λki+1
u = λki

u + ûki+1 − zki+1
u ;

rki+1
p = ∥ûki+1 − zki+1

u ∥22 + ∥x̂ki+1 − zki+1
x ∥22;

rki+1
d = ∥zki

x − zki+1
x ∥22 + ∥zki

u − zki+1
u ∥22.

end

Algorithm 2: Line search method with parameter αmin

α← 1
while
c(F (û+α ∆û), û+α ∆û) > c(x̂, û) and α > αmin

do
α← α

2
end

in the iLQR loop, where x = F (u) is the forward pass
function in vector form, built from xt+1 = f(xt,ut). ki and
kj represent the iteration indices in the ADMM and iLQR
loops, respectively (see Appendix and [56] for details of the
derivation).

2) Step 2 of ADMM: After Step 1 of ADMM for iLQR, we
obtain the converged nominal solution

{
x̂ki+1, ûki+1

}
, where

the projection step is derived below. In the case of control
bounds, h(u) = u and the projection step corresponds to clip-
ping the values of u between the bounds au and bu, as shown
in the Appendix. The projection is ΠCu

(u) = clip(u, lower =
au, upper = bu). In the case of state bounds, l(x) = x and
the projection step corresponds to clipping the values of x
between the bounds ax and bx, as shown in the Appendix.
The projection is ΠCx(x) = clip(x, lower = ax, upper = bx).
Above all, the projection step ensures that the solution remains
feasible with respect to the hard constraints. If a candidate
solution violates the constraints, the projection step clips it
to satisfy the constraints. Then, the hard constraints problem
can be naturally handled in the dual update step. The state
projections in our work correspond to the tool affordance range
represented by a prismatic constraint. The whole ADMM-
iLQR algorithm process is summarized in Algorithm 1.
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B. ADMM-iLQR on tool-use motion planning

We consider the tool-use motion planning problem as a
viapoint task with a desired range. We use the batch iLQR
form in our experiment by considering joint angle velocity
commands, with the dynamics expressed as a single integrator
to update the joint angle states given velocity commands. A
common and intuitive way to incorporate constraints into an
optimization problem is to use soft constraints as a weighted
cost. For redundant tasks, the constraints can be satisfied for
a large range of weights and do not need fine tuning of the
weights. However, for more complex tasks requiring trade-
offs, the weights need to be adjusted until a satisfactory result
is obtained. In such a case, with this adjustment through
weights, it can be difficult to ensure that this constraint is
strictly satisfied. The tool affordance in our work can be
taken as a constraint in the task space at a specific picking
time. Since the tool handling is a necessary prerequisite for
the completion of the entire manipulation task, it must be
taken as a hard constraint. However, the control commands are
described in the joint space of the manipulator. We introduce
the tool affordance constraint as a hard constraint into the
task space and embed the end-effector position into the state
function. Thus, the state function consists of joint position
and end-effector position x = {q,p}. For a robot with D
articulations, the system consists of a large vector {q,p}
lengths (D + 3)T with control commands length DT , by
concatenating the joint angle states qt and end-effector states
pt at different time steps t ∈ {1, · · · , T}.

In Eq. (16), the state l(x) representing the inequality
constraint of the problem is defined as the range of the handle
which is represented as a prismatic shape, and the affine
projection is used to solve this kind of constraint in the task
space to ensure that the robot reaches the hammer handle
within the available range. Besides the basic requirement of
the position reaching cost, the cost term is also composed of
the task requirement, including the orientation of grasping,
the final hammering direction and the maximum directional
manipulability (introduced in the following subsection).

C. Tool usage as an extended link in the robot kinematic chain

After a tool is grasped, the tool can be seen as an external
link to the robot, where the new end-effector is closely related
to the notion of tool affordance. Before the hammering motion
is executed, the soft connection can be seen as a fixed joint, in
which the original kinematic chain changes depending on the
grasping location. When handling tools, the manipulability of
the end-effector of the robot (e.g., gripper) and the end-effector
of the tool it holds can change considerably. This kinematic
chain can be brought into the optimal control problem to
maximize the manipulability of the extended kinematic chain.
As shown in Fig. 3, the gripping point location along the
tool and the gripper pose used to grasp this tool can result
in drastically different manipulability. In contrast, if we use
the same grasping orientation, the projection along the end-
effector direction is constant, independently of the grasping
point on the tool. This phenomenon can be observed by the
projection value in Fig. 3(a).
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(a) Same joint angle configuration with different tool grasps
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(b) Same tool grasp with different joint angle configurations

Fig. 3. Influence of the grasping pose on the velocity manipulability of a
3-axis planar arm, where the last link with light color represents the tool. In
subfigure (a), a planar arm grasps a tool with the same posture but a different
grasping position (left and right plot) and grasping orientation (left and middle
plot). The number shows the projection value along the world frame and local
end-effector frame (dashed box). Subfigure (b) shows the robot grasping the
same tool with different joint angle configurations.

D. Maximization of Velocity Manipulability

In this section, we discuss the different manipulability
metrics on the directional task. Directional manipulability is
an appropriate metric for the measurement and optimization
of manipulability in a particular direction. In addition, there
are also other commonly used metrics for measuring the
manipulability of manipulators. The method for maximizing
the end-effector volume of a manipulability ellipsoid is the
most commonly used metric, which does not take into account
tool affordance and directionality. Its isotropic expansion can
typically lead to failure to meet the specified direction required
by the task. In the following, we abbreviate this approach as
Common Metric. The third method is to set a desired ellipsoid
whose main axis is large in the desired direction, as in [50].
This approach cannot guarantee that the manually specified
ellipsoid is reachable by the robot. The robot will also consider
that matching the secondary axes is equally important as
matching the main axis of the ellipsoid. We introduce the
above three methods in the comparative study, with respective
cost functions defined as

c1man,T = wman ∥W⊤J(qT )
⊤n∥−2

2 , (23)

c2man,T = wman (det(J(qT )WW⊤J(qT )
⊤))

−2
, (24)

c3man,T = wman

∥∥∥log(M− 1
2

d M̃(qT )M
− 1

2

d )
∥∥∥2

F
, (25)

where c
{1,2,3}
man,T represents the cost of different strategies for

maximizing manipulability (respectively, directional manipu-
lability, common metric and tracking of desired manipulability)
at the final time step T , and at other time steps cman,T = 0.
wman represents the weight in the cost function. n ∈ R3 in
c1man,T represents the desired direction of maximization in the
task space. W represents the velocity capacity of each joint
and M̃(qT ) represents the manipulability at the final time
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(a) 2D space with 3-DoF planar robot (b) 3D space with Franka Emika 7-DoF
robot

Fig. 4. ADMM-iLQR applied to a viapoint task with a desired range task. In subplot (a), we show four examples of the viapoint with a desired range, where
the grey, red and blue robots represent the initial, via and final states of the robot, respectively. The first plot requires the robot to reach the range in cyan and
then the final position (red ring). We increase the complexity of the task by setting the final pose specified after passing through the range, arriving at the
range while maintaining a desired pose, and finally combining both constraints above into the fourth task scenario. The arrows in the last three plots (blue:
viapoint with a desired range; red: final) represent the specified direction. In subplot (b), our approach is verified on a simulated Franka Emika robot.

step T . Both values are defined in Eq. (12). Md represents
the desired manipulability (set manually with an axis having
a large value along the task direction).

E. Other task requirements defined in the cost function

We simplify the optimization problem by treating orien-
tation constraints as soft constraints in the cost function by
assigning appropriate weights to them. For a two-finger gripper
used as robot hand, the best way to grasp a cylindrical object
is to keep the grasping direction perpendicular to its axis,
ensuring the hammer does not fall off during transportation.
Therefore, to define a suitable viapoint with a desired grasping
range, we add an orientation constraint

co,t′ = woe
2
o , with eo = Ry

r
⊤Rz

h, (26)

where R with y and z superscripts represent y and z column
vector of the rotation matrix, the subscript r represents robot
and h represents the hammer. co,t′ is used to force the gripper
grasping direction y to be perpendicular to the axis z of the
hammer handle at hammer picking time step t′, and for other
time step co,t = 0. wo is the weight of the cost.

Before hammering, the robot should take the hammer to
the accurate desired pose at the final time step T , where the
hammer should be above the nail with the direction of the head
parallel to the nail. For the position part, the corresponding
cost with weight wpos is defined as

cpos,T = wpose
⊤
posepos, with epos = f(qT )− fd. (27)

The direction vector, which is a unit vector in three-
dimensional space, can be viewed as a point in a Riemannian
manifold S2, representing a unit sphere. The distance between
two directions is computed on S2, see Appendix for details.
The corresponding cost with weight wdir is

cdir,T = wdire
⊤
diredir, with

edir = LogS
2

vh(vr
T ) = arccos(vh⊤

vr
T )

vr
T − vh⊤

vr
T vh

∥vr
T − vh⊤

vr
T vh∥

.

(28)
We also need to consider the physical joint limits during mo-

tion planning. These joint angle constraints are usually viewed

as a hard constraint in optimization problems. However, it can
also restrict the exploration of joint configuration possibilities
during iteration, especially when exploring maximum manip-
ulability, where joint angle configurations significantly impact
the final result. We noticed that taking joint physical limits
as hard constraints can easily make the solution fall into a
local optimum. Soft constraints have thus been considered for
this part of the cost, represented by an activation function as
weight in the cost function, shown as

clim,t = ∥qL − qt∥2Λt
, with

Λi
t =

{
1 if qi

t ≥ max(qLi) or qi
t ≤ min(qLi)

0 otherwise
(29)

so that the constraint cost is activated if the joint position
exceeds the limit, where this cost clim is valid throughout the
timeline.

Summarizing the presentation of all the above constraints
and cost functions, the final optimization problem related to
Eq. (16) becomes

min
xt,ut

∑T
t=0 co,t(xt) + cpos,t(xt) + cdir,t(xt)

+clim,t(xt) + cman,t(xt) + ∥ut∥2R
s.t. xt+1 = f(xt,ut),

Cx :ax ≤ l(xt) ≤ bx,
Cu :au ≤ h(ut) ≤ bu,

(30)

where {ax, bx} represents the prismatic constraint of the tool
affordance range occurring at the tool pick-up timestep, and
{au, bu} represents the joint velocity limit of the manipulator
through the entire motion.

V. SIMULATION

To validate ADMM-iLQR in the task space constrained
motion planning, we design a viapoint task with a desired
range and extend its application to the pick-and-place task in
the 2D and 3D space on a planar robot and Franka Emika
robot in simulation. Then, we introduce the maximization of
manipulability along a desired direction to the optimal control
problem and show the difference in manipulability metrics.
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(a) Pick-and-place task with a 3-axis planar robot

Our proposed method

Baseline

With Directional V elocity Manipulability

Not Considering V elocity Manipulability

With Common Metric

With Tracking Desired V elocity Manipulability

Maximum Desired Direction

(b) Velocity manipulability at the tip

Fig. 5. ADMM-iLQR applied to a pick-and-place task. In (a), we show the results of considering the maximization of manipulability, where the grey, red
and blue robots correspond to the descriptions in Fig. 4(a). The robot is required to pick the blue cube and place it in the black dashed cube region while
maximizing the velocity manipulability of the robot-tool system along the object orientation. The arrow in the last plot represents the desired direction and
the red dot represents the object tip. In (b), we display the velocity manipulability of the robot-tool system separately on the tool tip generated by different
strategies. The projections along the desired direction generated by the different approaches are represented with arrows of different line styles. To observe
the differences between each projection more clearly, we lined them up in parallel. For a better view of the overlayed ellipses, see the color version of this
article.

The optimization algorithm is implemented in Python 3.8,
running on a personal computer with Intel(R) i7-10750H CPU
2.60GHz.

A. ADMM-iLQR in a viapoint task with a desired range

We define a square range at the intermediate timestep
(t′ = T/2) to simulate the available range to grasp the hammer
handle, then set a desired pose at the final timestep, as shown
in Fig. 4. In the planar task, the length of each link of the
planar robot is 1.0, and the size of the available range for
the hammer handle is defined as a rectangular shape with
length 1.4 and width 0.2. The control boundary is defined
as [−4, 4](rad/s) for the 2D examples and as [−3, 3](rad/s) for
the 3D examples. In the 3D simulation, we import the URDF
model of the Frank Emika robot, where the available range is
defined as a cube with size 1. The initial control states in both
cases are set as u = 0. In the iLQR parameter setting, the final
pose reaching weight is {2D-position and orientation: 1e2;
3D-position: 1e1, orientation: 1e0}, and the control weight for
both spaces is R = diag(1e-5). The cost threshold is cmax =
1. The penalty parameter for state and control of the ADMM
are set as {Qr-2D: diag(1e1); 3D: diag(1e0)}, {Rr-2D/3D:
diag(1e-3)}, respectively. The threshold is rp,max = rd,max =
1e-4. Also, the time step is {dt-2D: 0.01s; 3D: 0.06s}, and
the trajectory horizon is T = 100. The maximum iteration
numbers of the iLQR algorithm and ADMM algorithm are
kiLQR
max = 10 and kADMM

max = 20, respectively. We initialize
the robot close to this range. In the first task, we can observe
that the robot can reach the range and the target position. We
then add the orientation constraints to increase the complexity
of the task, where the robot needs to maintain a specified
orientation at the viapoint (with a desired range) and at the
final state. The results show that the ADMM-iLQR approach
performs well in solving OCP with the state constraint in task
space. The computation time in the four scenarios of Fig. 4(a)
is 10.03s, 21.43s, 18.57s and 5.34s, respectively. The planar
robot can find an optimal joint angle trajectory depending on

the relations between its initial configuration, the viapoint with
a desired range and the final target, effectively anticipating the
grasp by exploiting tool affordance.

B. ADMM-iLQR with maximization of manipulability in a
pick-and-place task

Based on the above simulation results, we add the consider-
ation of the manipulability in the motion planning problem and
design a pick-and-place motion scenario as shown in Fig. 5(a).
We also compare the maximization of different metrics to
show the advantage of directional manipulability, as shown
in Fig. 5(b). Here, we treat the tool as an external link in
the kinematic chain of the robot after the pick-up stage. In
this experiment, the weight of each joint angle actuator is
set to be unitary (i.e., with same importance). The algorithm
parameter setting is kept the same as in Section V-A, except
for the control weight of iLQR, which is changed to 1e-5.
The state and control penalty of ADMM are changed to {Qr-
2D/3D: diag(1e-1)}, {Rr-2D: diag(1e-2); 3D: diag(1e-3)},
respectively. The directional manipulability maximization cost
weight is set as {wman-2D: 1e0; 3D: 1e-1}. Due to the 3D
space simulation task setup close to the actual hammering,
its cost function is defined as Eq. (30). The final position
reaching weight wpos = 1e2, the weight of the via grasping
orientation and final direction reaching are wo = 1e1 and
wdir = 1e1. We perform simulations for different methods
in ten different experimental settings. The projection value of
the velocity manipulability is shown in Fig. 6. We also plot
the primal residual error and cost during ADMM iterations of
considering directional manipulability in Fig. 7. The average
computation time for these four different methods is 49.349s
(directional velocity manipulability), 20.014s (not considering
velocity manipulability), 48.607s (common metric), 70.134s
(tracking desired velocity manipulability).

We verified the results in a 3D space simulation, as shown
in Fig. 8. We can observe that directional manipulability
has a better performance. The method considering directional
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manipulability can sometimes get stuck in poor local minima,
which explains that the volume maximization can sometimes
perform better in these cases. The method maximizing the
common metric enlarges the ellipsoid in an isotropic way. For
the approach of tracking a desired manipulability [50], it is
hard to design a perfect desired manipulability to track, which
may be beyond the robot’s physical configuration or put too
many constraints on the ellipsoid axes that are not relevant for
the task. The average computation time for these four different
methods is 161.7s (directional velocity manipulability), 147.3s
(not considering velocity manipulability), 163.1s (common
metric), 210.5s (tracking desired velocity manipulability).
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Fig. 6. Projection of the velocity manipulability along the desired direction
in ten simulations.
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Fig. 7. Primal residual error and cost during ADMM iterations of considering
directional manipulability in ten simulations.

VI. ROBOT EXPERIMENT

We applied our approach to an impact-aware task requiring
a robot to hammer a nail into a foamed plastic base. We
evaluated the approach with a 7-axis Franka Emika manip-
ulator by using a joint velocity controller on the same PC
platform as the simulation. We chose the foamed plastic as
the pegboard, which is a soft material with a structure that
is still firm inside. This material can mitigate the impulse of
the hammering impact on the type of robot we used for the
experiment. Then, we used a nail to create a pilot hole by
inserting a nail fully and straight into the vacant space of
the foam platform. To simulate the connection between the
human hand and the hammer, we stuck two pieces of sponge
on the two grippers of the robot hand. The hammer is made
of ABS material by 3D printing, with the handle designed

(a) Joint angle configurations in the pre-hammering
state using different methods to maximize the veloc-
ity manipulability along the desired direction.
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(b) Velocity manipulability visualized in 3D space (left), with its projection
along the desired direction (right).

Fig. 8. ADMM-iLQR with maximization of different manipulability metrics
in a simulated pick-and-place task. In (a), the red robot corresponds to the
use of the directional velocity manipulability. The robot in solid lines does
not consider velocity manipulability. The green robot employed the common
metric. The blue robot tracked a desired velocity manipulability. For a better
view of the transparent overlays of the robots, see the color version of this
article.

TABLE I
MAXIMUM VELOCITY FOR EACH JOINT OF THE FRANKA EMIKA ROBOT⋆

Joint index Joint 1-4 Joint 5-7
q̇max 2.1750 rad/s 2.610 rad/s

⋆https://frankaemika.github.io/docs/control parameters.html

as a cylinder for easy grasp by a simple two-finger gripper.
The grasping range is defined as a cuboid whose length is
from 50 mm to 230 mm starting from the head and whose
width and height are 1 mm. The setup is depicted in Fig. 9.
The control inequality constraint of the problem is set as the
Franka Emika safety joint velocity limit as shown in Table I.
The time step, trajectory horizon, initial control command,
threshold, and other parameters setting of the iLQR algorithm
and ADMM algorithm are the same as those of the 3D space
simulation parameters setting in Section V-B. The hammer
picking-up time step is set as t′ = T/2.
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Fig. 10. Relationship between the insertion depth of the nails and the impact
force for two levels of tightness. The red dashed line and the blue solid line
represent the modeled relation based on the 15 sets of data sampled in the
slack and tight cases.

A. Hammering Force Test

We chose two kinds of tightness to evaluate our approach.
Due to the elasticity of the hammering platform, we could
adjust the tightness by repeatedly inserting and pulling the
nail to enlarge the pilot hole. Due to experimental equipment
constraints, we could not record impact forces accurately.
Indeed, as the connection between the grippers and the tool
remains soft, it is hard to fully transmit the impact force
to the robot’s sensors. To cope with this issue, we modeled
the relationship between the insertion depth of the nails and
the maximum impact force. We then exploited this model to
derive the impact force from the observed insertion depth
of the nails. We sampled 15 sets of impact forces with the
insertion depth of the nails, for each different tightness state
(blue dots represent tight holes, red circles represent slack
holes). A quadratic regression model was used to encode this
relationship. The sampling data and setup are shown in Fig.
10. Note here that if an external force sensor were mounted on
the head of the hammer, it would increase the weight of the
hammer head and cause a bias for the gravity center, further
increasing the grip instability and making subsequent impact
experiments difficult.

B. Hammering Nails

For the real robot experiment, we additionally used the
insertion depth of the nails as a way to visualize the differences
in velocity manipulability produced by different strategies
during impact. We randomly set the position of the hammer
and nail within the workspace of the Franka Emika robot

and fixed the initial joint angle configuration of the robot.
Inspired by the definition of manipulability, we normalized the
joint velocity vector, which is calculated by inverse kinematics
to keep the hammering direction along the nail axis. We
neglected the direction bias during the impact process. The
normalized motion in joint space results in a difference in the
manipulability ellipsoid on the end-effector. In the experiment,
we used a joint velocity controller to drive the system. We
kept the hammering velocity of each joint constant during the
impact process. In the hitting stage, the robot first drives the
hammer back two time steps at strike speed so that there is
enough space to reach the target speed at the state of hitting
the nail.

Screenshots of the hammering process are shown in Fig. 11,
depicting four typical cases, including the entire trajectory and
the grasping and pre-hammering state in Fig. 12. Additional
experiment details are presented in the supplementary video.
Due to the limited workspace available for the experiment,
we chose twelve locations of hammer and nail that were
reachable to accomplish the entire impact-aware task (six
experiments for each manipulability metric, using two different
tightness values). We used the insertion depth of the nails
as a performance indicator for each method. In addition, we
contrasted the use of ADMM-iLQR for motion planning to
the use of kinesthetic demonstrations (Human Demonstration
baseline). The use of kinesthetic demonstrations is another
intuitive and effective way to accomplish manipulation tasks
when operating a robotic manipulator. Therefore, we used
this as one of the baselines. But unlike demonstrations in
point-to-point movements, impact-aware tasks not only require
reaching a set of desired viapoints but also ensuring efficient
motion of the manipulator and efficient exploitation of the
kinematic redundancy to improve manipulability. To realize
that, the user dragged the arm of the robot to grasp the hammer
and then put the arm into a pre-hammer state.

TABLE II
THE PROJECTION VALUES ALONG THE DESIRED DIRECTION OF THE

TWELVE TIMES HITTING EXPERIMENT

Index A B C D E
S1 0.5894 0.7567 0.6677 0.6276 0.6084
S2 0.5224 0.7168 0.6322 × 0.5057
S3 0.6267 0.7346 0.5601 0.5158 0.5843
S4 0.7443 0.8800 0.8285 0.8257 0.8534
S5 0.6838 0.7700 0.6868 0.5744 0.5934
S6 0.7252 0.7505 0.6715 0.6305 0.6942
T1 0.5674 0.7579 0.6652 0.6223 0.6197
T2 0.5970 0.7507 0.7395 0.6921 0.6485
T3 0.6900 0.7962 0.6157 0.6234 0.5456
T4 0.5849 0.7367 0.6375 0.5875 0.6813
T5 0.7367 0.8884 0.8207 0.8303 0.8434
T6 0.4948 0.6227 0.5863 × 0.4923

(A) Not considering velocity manipulability; (B) Maximization
of directional manipulability; (C) Common metric; (D) Desired
ellipsoid tracking method; (E) Human demonstration.
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Fig. 11. Screenshot of four typical cases using the ADMM-iLQR with maximizing the directional velocity manipulability in the hammering task.

TABLE III
THE INSERTION DEPTH OF THE NAILS

Index A B C D E
S1 63 75 70 70 71
S2 65 71 69 × 63
S3 68 73 69 60 65
S4 72 80 80 76 80
S5 70 80 75 68 70
S6 71 74 75 73 73
T1 39 66 55 43 45
T2 40 65 65 64 54
T3 45 70 48 47 34
T4 41 61 45 46 63
T5 45 75 68 68 68
T6 35 58 42 × 31

Indices A/B/C/D/E correspond to the indices in Table II; values
in mm.

Grasp 

Posture

Pre-Hammer 

Posture

Fig. 12. Trajectories in the case of different maximization strategies. The left
and right plot represent the grasping posture and the final pre-hammering state,
respectively. The methods for different colored robots are the same as shown
in Fig. 8(a), with the addition of the baseline using human demonstration
(yellow robot). For a better view of the transparent overlay of the robots, see
the color version of this article.

C. Discussion of results

We list the maximum projection along the desired direction
in Table II and the corresponding insertion depth of the nails in
Table III. We can observe that the optimization considering the
directional manipulability has the highest value in the twelve
experiments. However, in the depth case S4, B/C/E all have the
same performance because the impact force has exceeded the
maximum limit of definable depths. In Table III case S6, these
methods all perform similarly, but C has the highest value.
Indeed, although the pilot hole smooths out the hammering
task, the rotational and plastic deformation during hammering
remains, which could still cause in some cases the nail to be
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Fig. 13. Velocity manipulability of the robot-hammer system at the impact
point, generated by different methods. These ellipsoids represent the velocity
manipulability of the robot-hammer system, whose end-effector is located at
the hammer head. The projection results are displayed on the right part for
the method for directional velocity manipulability (in red dash-dotted line)
without considering velocity manipulability (in black solid line), for common
metric velocity manipulability (in green dashed line), for desired velocity
manipulability tracking (in blue dotted line), and from human demonstration
(in yellow dash-dotted line). For a better view of the transparent overlayed
ellipsoids, see the color version of this article.

rotated by the hammering deflection. It is also the reason for
the inconsistency in the relationship between the projection
values and the insertion depth of the nails for the different
methods. We selected one case from the four typical cases in
Fig. 11 to illustrate the entire trajectory and plot the grasping
tool’s gestures and the pre-hammering robot’s configuration
in Fig. 12. We plot the velocity manipulability of the robot
in its hammering pose, and its projection along the desired
direction of the hammering on the right in Fig. 13, where we
can find that the projection of the directional manipulability is
the largest. The primal residual error and cost during ADMM
iterations of considering directional manipulability are shown
in Fig. 14. We also plot the relation between the projection and
the insertion depth in Fig. 15, where we can find that its trend
is similar to Fig. 10(a). The gradient of the maximum impact
force increases gradually as the insertion depth increases. To
observe the performance of the different methods, the box plot
in Fig. 16 additionally compares the insertion depth of the nails
using different manipulability metrics. We can observe that
almost all the methods perform well in the slack nail driving
case. In the tight case, the human demonstration method is
randomly distributed due to the robot configuration not being
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considered, where the user typically prefers to use an easily
dragged posture in the demonstration. The directional ma-
nipulability performs best, and the tracking desired ellipsoid
strategy does not work in some task settings. The common
metric strategy focuses on volume maximization, which only
worked efficiently in some cases. The average computation
time for these four different methods is 56.8s (directional
velocity manipulability), 44.1s (not considering velocity ma-
nipulability), 50.7s (common metric), 97.5s (tracking desired
velocity manipulability). There is a big difference between the
actual scene and the simulation on the hammer’s placement
and the hitting direction setup, significantly impacting the
computation time. In the simulation, the hammer and the
hitting direction are randomly set in the table workspace.
However, in the actual task, the hitting direction should be
set perpendicular to the ground at a specific height. Those
result in a significant difference in the computation time of
both cases. Since the motion planning of the final hitting
motion is not considered in the optimization process, the
failures due to reaching the joint limits (listed in the table)
all occurred during the impact phase. We can observe that
tracking the desired manipulability always leads the robot to
singular configurations close to joint angle limits, which makes
it easy for the impact motion to exceed the joint physical
limits (see hollow ring of the blue box in Fig. 16). This kind
of configuration has a significant influence on the subsequent
hammering action. Therefore, we defined this situation as a
failure case.

In addition to the above successful cases, we also en-
countered some failure cases that were not considered in the
analysis of the results. In the hammer grasping phase, due to
the limitations of the experimental equipment, we employed a
simple gripper. When handling the hammer, the gripper cannot
guarantee a very stable grasp because the gravity is mainly
distributed on the head of the hammer. Therefore, the held
hammer can sometimes be rotated or shifted when grasping
it or in the subsequent movement process. In addition, when
the robot picks up the hammer away from the support frame,
the grasp can also be affected by perturbations caused by the
support frame. In the proposed approach, the tool handled
by the robot is considered as an external link of the robot
kinematic, so the above disturbances can degrade the reaching
of the final hitting pose. Also, as our contribution focused on
the tool affordance aspects, we did not consider the collision
avoidance problem extensively. While collision is an additional
possible failure factor, it rarely happened in practice with the
problem setup that we proposed, except in the comparison case
of tracking a desired manipulability.

VII. DISCUSSION

The approach presented in this paper adopts the ADMM-
iLQR approach to solve motion planning problems exploiting
tool affordances by comparing different strategies for max-
imizing manipulability along specific task directions with a
constrained optimal control approach. The gripping point for
the tool is treated as a viapoint to reach within a desired
range, which provides the flexibility of choosing the grasping
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Fig. 14. Primal residual error and cost during ADMM iterations when
considering directional manipulability in twelve hammering experiments.
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Fig. 15. Relations between the nail insertion depths and the maximum
projection of manipulability along the desired direction.

posture, so that the robot can automatically select an ideal
gripping point by anticipating how the tool will be further
used after grasping it. Thus, the grasping hand pose and the
body configuration are also determined by the final hitting
direction, allowing the motion planning process to use the
tool by considering the requirements of both the task and the
environment in which the motion takes place. By considering
the directional velocity manipulability, the manipulator can

Fig. 16. Nail insertion depths in slack and tight cases. The boxplots show the
results for the ADMM-iLQR motion planning using different methods, where
the indices A/B/C/D/E correspond to the indices in Table II. Circle points
correspond to the cases where the robot finds solutions over the joint limits
in the motion planning process. The red dashed line represents the pre-depth
of the nail in the plastic foam.
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give a large local speed to the handheld tool, effectively
generating a large momentum during the impact.

In contrast to the scenario where a robot hand would directly
act on the nail, using a tool such as a hammer involves an
additional soft connection in the kinematic chain, where the
tool can be used as an additional link in the kinematic chain.
The soft connection leads to a quasi isolation of the body
inertia from the system during the impact, where the tool
inertia has the most important influence. The assumption for
this category of hitting tasks using tools is that the robot inertia
can be ignored during the impact. In contrast, the robot posture
will influence the capability of the robot to use the handheld
tool. Velocity manipulability is thus maximized rather than
inertial or force manipulability.

In the experiment, we used a simple two-finger gripper
that cannot ensure perfectly stable grasping and hammering.
Although the two-finger can meet our simple requirement, we
still sporadically observed unexpected outcomes, such as the
hammer falling off during the impact motion, or a deviation in
the hitting impact. In future work, we aim to ameliorate this
aspect by combining the approach with a visual corrective
feedback component.

VIII. CONCLUSION

In this article, we proposed a constrained optimal control
approach considering directional manipulability as a way to
improve the performance of using tools in impact-aware tasks.
We relied on ADMM-iLQR to efficiently solve constrained
optimal control problems, by considering the notion of tool
affordance, in the form of task space constraints in which the
robot can determine an optimal configuration to grasp the tool
by taking into account what the tool can offer when held by
the robot. The approach has been tested for tasks requiring
impacts. We demonstrated in various simulations and on a
real robot experiment that the robot was able to solve this
challenge with viapoint references specified as a desired range
to reach with preferred orientations, while maximizing the
velocity manipulability along desired task directions. Our ex-
perimental results showed that the consideration of directional
manipulability in our approach achieved better hammering
performance than the baselines, including the use of human
demonstrations, the use of a common scalar manipulability
index, and the tracking of desired manipulability ellipsoids.
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APPENDIX

PROJECTION ONTO SUBLEVEL SET OF A CONVEX
FUNCTION

Solutions to the optimization problems in the form min
x
∥x−

z∥ s.t. f(x) ≤ u is called a projection onto the sublevel set

of a convex function and denoted as ΠC(z) with the convex
set C = {x | f(x) − u ≤ 0}. This projection is given by
ΠC(z) = (I + µ∂f)−1z, where µ is an arbitrary solution of
f (ΠC(z)) = t.
Affine projections: If we let f(x) = a⊤x with C ={
x | a⊤x ≤ u

}
, then ∂f = a, hence

(I + µ∂f)ΠC(z) = z,

ΠC(z) + µa = z,

ΠC(z) = z − µa.

(31)

Then, we find an arbitrary solution for µ from f(ΠC(z)) =
u as

f(z − µa) = u,

a⊤(z − µa) = u,

µ =
a⊤z − u

∥a∥22
.

(32)

One can find the projection onto C = {x | l ≤ a⊤x} by
letting f(x) = −a⊤x and by replacing u with −l.

Note that if we take x to be one-dimensional and a = 1,
then the problem becomes the projection onto bounds C =
{x | x ≤ u}, which can be solved with the clipping operator
defined by ΠC(z) = min(z, u). This can be extended to lower
bounds with ΠC(z) = max(min(z, u), l). The projection of
affine hyperplane is defined as

Constraints: l ≤ a⊤x ≤ u
Projection: ΠC =

x if l ≤ a⊤x ≤ u,
x− (a⊤x− u) a

∥a∥2
2

if a⊤x > u,

x− (a⊤x− l) a
∥a∥2

2

if a⊤x < l.

(33)

BATCH SOLUTION OF LINEAR QUADRATIC REGULATOR
(LQR)

We can describe all states x in a trajectory, concatenated in
a big vector, as a linear function of the initial state x1 and the
applied control commands u as

x = Sxx1 + Suu, (34)

where

Sx =


I
A
A2

...
AT−1

 ,Su =


0 0 · · · 0
B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AT−2B AT−3B · · · B

 .

(35)
To track a desired reference xd, the cost function can be
defined as

c(x,u) = (x− xd)
⊤Q(x− xd) + u⊤Ru, (36)

where Q = blockdiag (Q1,Q2, · · · ,QT ) and R =
blockdiag (R1,R2, · · · ,RT−1). Substituting (34) and (35) to
(36), we obtain

c(x,u) =u⊤(S⊤
uQSu +R)u+ 2u⊤S⊤

uQ(Sxx1 − xd)

+ (Sxx1 − xd)
⊤Q(Sxx1 − xd).

(37)
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The optimal control command u is computed by differen-
tiating (37) with respect to u and equating to zero, providing
the batch form solution

u =
(
S⊤
uQSu +R

)−1
S⊤
uQ(xd − Sxx1). (38)

Sd MANIFOLD

The exponential and logarithmic maps corresponding to the
distance

d(x,y) = arccos(x⊤y), (39)

with x,y ∈ Sd can be computed as (see also [57])

y = Expx(u) = x cos(∥u∥) + u

∥u∥
sin(∥u∥), (40)

u = Logx(y) = d(x,y)
y − x⊤yx

∥y − x⊤yx∥
. (41)

REFERENCES

[1] E. Bizzi, N. Accornero, W. Chapple, and N. Hogan, “Posture control and
trajectory formation during arm movement,” Journal of Neuroscience,
vol. 4, no. 11, pp. 2738–2744, 1984.

[2] D. A. Rosenbaum, L. D. Loukopoulos, R. G. Meulenbroek, J. Vaughan,
and S. E. Engelbrecht, “Planning reaches by evaluating stored postures.”
Psychological review, vol. 102, no. 1, p. 28, 1995.

[3] M. Desmurget and C. Prablanc, “Postural control of three-dimensional
prehension movements,” Journal of neurophysiology, vol. 77, no. 1, pp.
452–464, 1997.

[4] I. Cos, N. Bélanger, and P. Cisek, “The influence of predicted arm
biomechanics on decision making,” Journal of neurophysiology, vol.
105, no. 6, pp. 3022–3033, 2011.

[5] T. Yoshikawa, “Analysis and control of robot manipulators with redun-
dancy,” in 1st Int. Symp. on Robotics Research, Bretton Woods, NH,
1984, 1984, pp. 735–348.

[6] T. Yoshikawa, “Manipulability of robotic mechanisms,” The interna-
tional journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985.

[7] T. Yoshikawa, “Dynamic manipulability of robot manipulators,” Trans-
actions of the Society of Instrument and Control Engineers, vol. 21,
no. 9, pp. 970–975, 1985.

[8] N. Jaquier, L. D. Rozo, D. G. Caldwell, and S. Calinon, “Geometry-
aware tracking of manipulability ellipsoids,” in Robotics: Science and
Systems, 2018, pp. 1–9.

[9] S. L. Chiu, “Task compatibility of manipulator postures,” The interna-
tional journal of robotics research, vol. 7, no. 5, pp. 13–21, 1988.

[10] J. J. Gibson, “The theory of affordances,” Hilldale, USA, vol. 1, no. 2,
pp. 67–82, 1977.

[11] D. A. Norman, The psychology of everyday things. Basic books, New
York, NY, 1988.

[12] H. Head and G. Holmes, “Sensory disturbances from cerebral lesions,”
Brain, vol. 34, no. 2-3, pp. 102–254, 1911.

[13] K. Vaesen, “The cognitive bases of human tool use,” Behavioral and
brain sciences, vol. 35, no. 4, pp. 203–218, 2012.

[14] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and
S. Savarese, “Learning task-oriented grasping for tool manipulation
from simulated self-supervision,” The International Journal of Robotics
Research, vol. 39, no. 2-3, pp. 202–216, 2020.

[15] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” International Journal
of Control, vol. 3, no. 1, pp. 85–95, 1966.

[16] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems,” in First International Con-
ference on Informatics in Control, Automation and Robotics, vol. 2.
SciTePress, 2004, pp. 222–229.

[17] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

[18] D. Kraft, A Software Package for Sequential Quadratic Programming,
ser. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt
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